Approximate Postdictive Reasoning with Answer Set Programming

Manfred Eppe®*, Mehul Bhatt®

4 International Computer Science Institute, Berkeley, USA
b University of Bremen, Germany

Abstract

We present an answer set programming realization of the h-approximation (HPX’) theory [8] as an efficient and provably sound
reasoning method for epistemic planning and projection problems that involve postdictive reasoning. The efficiency of HPX
stems from an approximate knowledge state representation that involves only a linear number of state variables, as compared
to an exponential number for theories that utilize a possible-worlds based semantics. This causes a relatively low computational
complexity, i.e, the planning problem is in NP under reasonable restrictions, at the cost that HPX is incomplete. In this paper,
we use the implementation of HPX to investigate the incompleteness issue and present an empirical evaluation of the solvable
fragment and its performance. We find that the solvable fragment of HPX is indeed reasonable and fairly large: in average
about 85% of the considered projection problem instances can be solved, compared to a PWS-based approach with exponential
complexity as baseline. In addition to the empirical results, we demonstrate the manner in which HPAX can be applied in a real
robotic control task within a smart home, where our scenario illustrates the usefulness of postdictive reasoning to achieve error-
tolerance by abnormality detection in a high-level decision-making task.

Keywords: commonsense reasoning, action and change, epistemic reasoning, answer set programming

1. Introduction

Starting with the seminal work by [20], a huge body of work concerning logical formalisations of reasoning about action, change
and knowledge has been developed (e.g. [23, 5, 6, 15]). In this field, we are particularly interested in the practical application of
epistemic action theories, e.g. [21, 26, 25], which are concerned with reasoning about the knowledge of an agent.

Our existing work [8] focuses in particular on postdictive inference in epistemic action theory. It shows that it is possible to solve
the projection problem in the context of reasoning about actions and knowledge in polynomial time, whilst allowing for elaboration
tolerant postdictive reasoning. The planning problem is solvable in NP.

In [8], we describe a theoretical transition-function based approach to model the postdictive HPX theory. However, we left open
the question how to implement our theory, and we also did not account for the usability of the theory in terms of its solvable
fragment and its actual application in practice. In this paper, we fill this gap and develop a formalisation of HPX in answer set
programming (ASP) [2]. We use this implementation to investigate the solvable fragment of the theory and to perform experiments
with real robots.

Postdictive Reasoning

As stated in [8], “[we] regard postdiction as a form of reasoning accounting for causal relations between temporally ordered states.
Postdiction is abductive reasoning, in the sense that it can be used to explain an observation. However, technically, it can be
implemented in a deductive manner, as shown throughout this paper. Within an epistemic action theory, postdictive reasoning can
be applied to verify action success and to infer new knowledge about the past.”

An illustrative example is the Litmus test, which was originally introduced in the context of postdictive reasoning in Moore [21].
It illustrates how postdiction determines a world property, which is not directly perceivable, by observing another world property
which is a causal consequence of the imperceivable world property. In the litmus example, the the acidic-ness of a liquid is
determined by observing the color of the paper.

Example 1. The litmus test [8]
To find out whether a liquid is acidic or alkaline, one can hold a litmus paper into the liquid. If the paper is red, one can postdict
that the liquid is acidic, and if the paper is blue, one knows that the liquid is alkaline.

*Corresponding author
Email addresses: eppe@icsi.berkeley.edu (Manfred Eppe), bhatt@informatik.uni-bremen.de (Mehul Bhatt)

Preprint submitted to Journal of Applied Logic August 9, 2015

In this paper, we take a particular look at using postdiction for abnormality detection in the application domain of robotic environ-
ments. For example, a robot can postdict that a door is closed when it tries to pass the door, but its location sensors tell that it does
actually not arrive behind the door. However, as we emphasise in Sec. 5, robotics is only one example domain where postdiction is
important.

Contributions: Implementation and Application of a Postdictive Epistemic Action Theory

The key contributions emanating from the research presented in this paper are (C1-C2):
C1. Implementation of HPX within the framework of answer set programming.

C2. Empirical evaluation and application of 7P X in a robotics-based smart home environment.

C1. Formalisation of HPX as an Answer Set Program

The transition function semantics described in [8] provides a clear formal view on the HPX theory, but it does not provide an
actual implementation which is necessary for an empirical evaluation and the application in real robotic environments. To address
this, we present HP X in terms of answer set programming (ASP). The ASP formalization captures the theory in a model-theoretic
form, similar to logic programming implementations of the action language A [13] or the Discrete Event Calculus (DEC) [22]. The
well-understood stable model semantics that underlies ASP makes it possible to show that our implementation is actually sound
wrt. the operational semantics (Theorem 1). Consequently, the implementation shares all properties of the operational semantics
that are mentioned in [8], i.e. native postdiction, linear number of state variables, temporal knowledge, and concurrent acting and
sensing.

Our ASP formalization is implemented a set of translation rules and a set of domain independent logic programming rules. The
translation rules compile a domain description specified in an action language syntax into a a set of domain specific logic program-
ming rules (denoted I',0514), Which are then combined with the domain independent part (denoted I';,;;). The domain independent
part is a fixed kernel that covers inertia, inference mechanisms and concurrency, as well as plan generation and verification. The
domain specific part is generated by our translation rules and covers causation, postdiction and initial knowledge, according to the
action language domain specification.

The logic program is processed by an off-the-shelf ASP solver which generates stable models (SM). We show how the SM can
be interpreted as conditional plans for applications in cognitive robotics. The same ASP-based framework can also be used for
abductive explanation or deductive reasoning in applications like narrative interpretation, smart homes, ambient intelligence, etc.

C2. Empirical Evaluation of the Solvable Fragment of 7{P X, and its Application in a Smart Home

Section 4 provides a proof of concept of our theory and motivates the approach with a real robotic application. It also contains
an empirical evaluation of the theory. Specifically, Section 4.1 investigates (i) the computational performance and (ii) the solvable
fragment of our theory. For (i), we measure the computation time required to solve a number of problem instances, and for (ii) we
count the number of fluents that are known after a course of actions, and compare it to a PWWS-based approach.

Section 4.2 demonstrates how the HP X planning framework is applied in a real cognitive robotics smart home environment. Here,
we use our theory to control actuators and sensors in the smart home. This involves most notably an autonomous robotic wheelchair
that can drive autonomously by utilizing a waypoint-based navigation module, along with obstacle-avoidance facilities. The smart
home also features automatic doors, illumination control and video cameras. In the context of such environments, we use the
postdiction capabilities of HPX for abnormality detection. Here, we refer to an abnormality as a condition under which an action
is not successful. For instance, a typical assistance task in the smart home is (a) navigate the wheelchair to a person’s location
(b) pick the person up and (c¢) bring her to her destination. However, an abnormality could e.g. be caused by a chair that blocks an
automatic door that would normally open if the chair was not there. If we observe that the door did not open, we can postdict that
there was an abnormality and the wheelchair has to pick an alternative route (through another door) to reach its destination. We use
the smart home setting as running example throughout this paper.

2. Preliminaries

Our implementation employs the non-monotonic declarative framework of answer set programming to realize the practical appli-
cation and evaluation of the HPX theory. In the following we give some preliminaries on ASP and action languages. We refer to
[2, 10] for more details.

2.1. Answer Set Programming

Answer Set Programming (ASP) is a form of Logic Programming which uses Negation as Failure (NaF) to implement non-
monotonic reasoning. ASP is based on the Stable Model (SM) semantics [12] which makes ASP fully declarative. ASP solvers
take Logic Programs (LPs) as input and employ the Stable Model Semantics to find solutions to Logic Programs which are called
Answer Sets. In this work, we consider normal Logic Programs P, which are defined by a set of rules of the form

h<by,...,0n,n0t byi1,...,n0t byim. (D)
with0 <n <n-+m.

We call h heat atoms and b body atoms. Atoms and negated atoms are called fluent literals.

The symbol not denotes Negation as Failure (NaF), also known as default negation or weak negation. In the following, an atom a
or the default negation not a of an atom is referred to as a literal. The Negation as Failure principle emerges from the Stable Model
semantics [12], which is based on the Gelfond-Lifschitz reduct [12] of a Logic Program P wrt. a model M. This is described in
Definition 1.

Definition 1 (The Gelfond Lischitz Reduct). Let body™ (r) be the set of positive literals in a rule v of a Logic Program, and
body~ (r) the set of negative literals. The Gelfond-Lifschitz reduct (GL-reduct) of a Logic Program P wrt. a model M, denoted by
PM g defined as:

PM = {head(r) + body™ (r)|r € P Abody™(r) N M = ()} (2)

The reduct of a program P wrt. a model M, denoted PM is obtained as follows: 1) For all atoms a € M remove every rule which
contains not a in its body, so that the rule can not trigger its head atom to be true. 2) For the remaining rules remove all negative
literals from their bodies. These can be assumed true as their atoms are not in M anyways.

A reduct PM must always have one unique minimal model M M (PM), which is said to be a Stable Model of P if it is equal to the
original model M. The set of Stable Models of a Logic Program is denoted by SM[P].

Several extensions to the Stable Model Semantics were proposed and implemented to increase the expressiveness of answer set
programming and to facilitate the Logic Program design. The extensions that are most important wrt. this work are integrity
constraints and choice rules.

Integrity constraints allow one to specify a set of atoms which must not be entailed by a stable model. They are rules where the
head is empty, i.e. rules of the following form:

—by,...,bp,not byy1, ..., n0t byim 3)
Intuitively, the above integrity constraint forbids all Stable Models which contain atoms by, ..., b, and which do not contain
bn+1,--.,bn. For details we refer to literature [10, 2].

Choice Rules are used in the so-called generation part of a Logic Program (see e.g. [10]). Intuitively, Choice Rules propose
candidate sets of atoms which “generate” a Stable Model if they are compatible with the other rules and constraints in the Logic
Program and if they result in a model that is stable. Choice Rules are constructs of the form (4).

{h1,... hn} < b1, ... b, 0Ot by, NOE by 4

Intuitively, the above rule states that, if the body of rule (4) is entaild in the LP, one stable model is generated for each subset of
{h1,...,hs}, which contains the atoms of that subset. For other syntactic sugar, such as cardinality constraints and conditions in
ASP we refer the reader to literature [10, 2].

Answer set programming is commonly used to implement action languages, such as the languages A,B,C [14, 1, 17], or the Event
Calculus and the Situation Calculus [18]. Here, non-monotonicity is used to model inertia and the frame problem [24].

2.2. Action Language Syntax and Semantics
Domain specifications in our action language consist of the following elements (1a) — (1d), as described in [8].

initially(/{"", ... Il (5a)
causes(a, (15 ...15) (5b)
determines(a, f*) (5¢)
executable (a, [{” ... 15") (5d)

(5a). A set of value propositions (VPs) denotes initial knowledge. We define VP as the set of expressions (5a). We sometimes
write initially (1{"%, ... 1i"%) to denote a set of n;y;; VPs for the respective literals I{"%, ... [int

) "Mnit”

(5b). A set of effect propositions (EPs) represent conditional action effects . We call [{...[; condition literals and [° an effect
literal. For an effect proposition ep of the form (5b) we write ¢(ep) to denote the set of condition literals and e(ep) for the
effect literal. We use £P to denote the set of effect propositions of a domain D, and we sometimes write £P® to denote the
subset of EPs for one fixed a.

(5¢). Knowledge propositions (KPs) of the form (5¢) represent that an action a senses a fluent f°. We define /JCP as the set of
knowledge propositions of D, and we sometimes write XP® to denote the knowledge proposition for one fixed a.

(5d). Executability conditions (EXCs) of the form (5d) denote what an agent must know in order to execute an action. We denote
EXC as the set of executability conditions of D, and we sometimes write EXC“ to denote the set of executability conditions
for one fixed a. Formally, each action has one executabiltiy condition, where executable(a, () is implicit for any action a
without an explicit executability condition.

The semantics of action languages is usually defined in terms of a transition function that maps actions and states to states, as, e.g.,
described in [14]. States are represented as sets of fluents. For example, given an effect proposition causes (a, (¢,[), a transition
function ¢ in the action language A [13] maps the action a, together with any state that contains the fluent literal [¢, to a state
which contains /€. In other words, (€ holds after a was applied on a state in which [holds. The most common problems that action
languages solve are the projection problem and the planning problem. The projection problem is that of determining whether a
certain literal [holds after a given sequence of state transitions in a given initial state. The planning problem is that of determining
a sequence of state transitions to obtain a certain goal literal [given an initial state. For details we refer to [8].

3. Answer Set Programming Formalization of HPX

To make HPAX applicable in practice, we implement the theory in terms of answer set programming and realize the core HPX
inference mechanisms for causation, forward and backward inertia, as well as positive and negative postdiction presented in [8, Sec.
3] as logic programming rules. In addition, we specify a set of rules for epistemic action planning. Section 3.1 describes the main
predicates and how the temporal dimension of knowledge is represented. An HPX-logic program consists of a domain-specific
and a domain-independent part (see Section 3.2). The domain-specific part is generated by seven translation rules (T1) — (T7), that
compile the action language syntax into LP rules (see Section 3.3). The domain-independent part is a fixed set rules to model inertia
and sensing (see Section 3.4). The stable models that result from the logic programs are interpreted as conditional plans, in order
to realize decision making tasks for cognitive robotics and other application domains (see Section 3.5). The logic programming
implementation of HPX can be understood as an alternative model-theoretic semantics of HPX. The relation between the model-
theoretic semantics and the operational #P X’ semantics is illustrated in Section 3.6, which also contains a corresponding soundness
theorem.

3.1. Main Predicates and Notation
The following are the main predicates used in the ASP formalization:
* knows(l,t,n,b) states that at step n in branch b it is known that [holds (or did hold) at step ¢ (with ¢ < n).

* occ(a,n,b) denotes that action a occurs at step n in branch b.

* apply(ep, n,b) denotes that an effect proposition ep is applied at step n in branch b. Whenever occ(a, n, b) and ep is an effect
proposition of a, then apply(ep, n, b). This reflects the abstraction from action histories to effect histories in [8, Def. 1].

* sRes(l,n,b,b") denotes that the literal [is sensed at step n in branch b, such that it will hold in the child branch .
* uBr(n,b) denotes that branch b is a valid branch at step n. Actions can only be executed if a branch is valid.

As a notational convention, for negative literals we write - f to denote neg(f) in ASP syntax.

3.2. Constitution of an HP X -logic program
The formalization is based on a domain independent foundational theory I';,,,, and on a set of translation rules T that are applied
to a planning domain D. An ASP formalization of D, denoted by LP(D), consists of a domain dependent theory and a domain
independent theory:
* Domain dependent theory (I'y,44q): It consists of a set of rules I'fyents Tepresenting fluent declarations, I';,,;; representing
initial knowledge; I'.; representing actions; and I g, representing goals.!

'We use the term goals in the context of action planning. However, one could similarly use the term qguery to emphasize that such statements query whether a
fluent literal is known to hold after the execution of a plan.

* Domain independent theory (I';,;): This consists of a set of auxiliary definitions I',,;; a set of rules to handle inertia
(I'sn); sensing (I's.,); inference mechanisms (I'y,f.,-); concurrency (I'conc); plan verification (I'yeripy) and plan-generation
& optimization (I';47,).

The resulting logic program, denoted LP(D), is given as:

LP(D) = [Fauz U an U Fsen) Finfer U Fconc U Fverify U Fplan] U [Fﬂuents U Finit U Fact) Fgoal]

(6)
tha: Twortd
We call a logic program that is assembled according to (6) an P X'-logic program for a domain specification D.
3.3. Translation Rules: (D =Y Pwonid)
The domain dependent theory I',,,,4 is obtained by applying the set of translation rules T = {T'1,...,77} on a planning domain

D, specified in the action language syntax. Translation rule T1 declares fluents by generating I g, enss, Tule T2 generates I';, ¢, rules
T3 - T6 generate I',; and rule T7 generates I' ;4.

3.3.1. Fluent Declarations (D |£> I fuents)
For every fluent f € Fp, LP(D) contains a fact (T1).

o fluent(f) (T1)
3.3.2. Initial Knowledge (VP = Tinit)
Facts I';,,;; for initial knowledge are obtained by applying translation rule (T2). For each value proposition initially(/""*) (1a), we
generate the fact:
. ite Enows(1™*,0,0,0) (T2)
3.3.3. Actions (EP,KP,EXC ¥— T'4er)
The logic programming rules that represent actions involve effect propositions, knowledge propositions and executability condi-
tions. They are generated by translation rules T3 — T6, and constitute the main part of the domain-specific part of an HP A" logic
program.
Declaration of Effect Propositions.
For every effect proposition (1b) of the form causes (a, e, {is .. 15, }) , LP(D) contains (T3). Here, ep is an automatically generated
identifier for the particular EP of a, hasCond represents condition literals, hasEff represents effect literals and hasEP assigns an

effect proposition. hasEP(a, ep)

hasEff (ep, 1) (T3)
hasCond(ep,17) ... hasCond(ep,l;,)

Knowledge Level Effects of Effect Propositions.
Knowledge-level effects of EP represent knowledge gain by causation and postdiction, i.e. they reflect inference mechanisms IM.3
—IML5 as specified in the operational HPX semantics [8].2

kCause(1°,T 4+ 1, N, B) <apply(ep, T, B), N > T, knows(l{,T, N, B), ..., knows(l;,T, N, B) (T4a)
kPosPost(I$,T, N, B) <-apply(ep, T, B), knows(I1°, T + 1, N, B), knows(1¢,T, N, B) (T4b)
kNegPost(lfT, T, N, B) <apply(ep, T, B), knows(l¢,T + 1, N, B), knows(lfj, T,N,B),..., k:nows(lic:, T,N,B) (T4c)

» Causation (T4a). This refers to inference mechanism IM.3 in [8, Eq. (11)]. After an arbitrary number of steps n, if all condition
literals [{ of an EP (1b) are known to hold at ¢, and if the action is applied at ¢, then at step n > ¢, it is known that its effect [holds
at t 4+ 1. This is denoted by the atom kCause(l¢,t 4+ 1,n,b) which reads as “by causation inference it is known that at step n in
branch b literal [¢ is known to hold at step ¢ + 1”. The atom apply(ep,t,b) represents that action a with the EP ep happens at ¢ in b.
» Positive postdiction (T4b). In the operational semantics, positive postdiction is defined as inference mechanism IM.4 in [8, Eq.
(12)]. In the ASP formulation, we iterate over condition literals [§ € {I{,...,[;, } of an effect proposition ep and add a rule (T4b)
to the LP for each condition literal [{. This defines how knowledge about the condition of an effect proposition is postdicted by
knowing that the effect holds after the action but did not hold before. For example, if at n in b it is known that the complement
1¢ of an effect literal of an EP holds (i.e., knows(I¢,t,n,b)), and if the EP is applied at ¢, and if it is known that the effect literal
holds at ¢t + 1 (knows(l¢,t 4+ 1,n,b)), then the application of the EP must have produced the effect. Therefore one can conclude

2The frame problem is handled due to Negation as Failure that inheres in the stable model semantics (see e.g. [18]).

that the conditions {5, ...,I¢ } of the EP must hold at ¢. This is represented by the atom l<:PosPos>’t(l?7 t,n,b) which reads as

“by positive postdiction it is known that at step n in branch b literal [~ is known to hold at step ¢”.

» Negative postdiction (T4c). Negative Postdiction is defined as inference mechanism IM.5 in [8, Eq. (13)]. We iterate over
each potentially unknown condition literal [~ € {If,...,I5.} of an effect proposition ep. For each literal I, we add one
rule (T4c) to the program, where {I{",... ¢} = {If,... 12 }\I§™ are the condition literals that are known to hold. An atom

7 lne

c
Ne

kNegPost(I{~,t,n,b) denotes that “by negative postdiction it is known that at step n in branch b literal [{~ is known to hold at step
t”. This covers the case where we postdict that a condition must be false if the effect is known not to hold after the action and all
other conditions are known to hold. For example, if at n it is known that the complement of an effect literal holds at some ¢ + 1,
and if the EP is applied at ¢, and if it is known that all condition literals hold at ¢, except one literal I~ for which it is unknown
whether it holds. Then the complement of /{~ must hold because otherwise the effect literal would hold at ¢ 4 1. Note that this only
works correctly if concurrent effect porpositions have different effect literals (see rule (F2b)).

Knowledge Propositions.
We assign a knowledge proposition (KP) (1c) to an action a using a hasK P predicate:

hasK P(a, f) (T5)

Executability Conditions.
These reflect what an agent must know to execute an action. For each executability condition executable (a, {igr . ey }) (1d),
LP(D) contains the following constraints:

+ occ(a, N, B),not knows(1{*, N, N, B)

T6
< occ(a, N, B),not knows(l;,” ,N,N, B) (T6)

Example 2 demonstrates how translation rules (T3) — (T6) generate the logic programming rules for I",;.

Example 2. Generating I,
Consider an action drive with the effect proposition causes(drive, in_room, is_open) and the executability condition exe-
cutable(drive, is_open). The effect propositions is defined by (T3) as follows:

hasEP(drive7 ep,drive,O) hasEﬁ(ep,drive,O, in,room) haSPC(ep,drive,O7 open)
Here, ep_drive_0 is a syntactically generated label for the 0-th effect proposition of the drive action. The knowledge-level
effects of the action are generated through (T4a—T4c):
kCause(in_room, T + 1, N, B) < apply(ep-drive 0, T, B), N > T, knows(open, T, N, B)
kPOSPOSt(open, T7]\/v7 B) (—apply(ep,drive,o, T7 B), knows(in,room, T+ 1, N, B)7 knows(—!in,room, T, N, B)
kNegPost(—open, T, N, B) < apply(ep-drive 0, T, B), knows(—in_room, T + 1, N, B)

The first rule refers to causation (T4a): If it is known that the door is open, then it is known that the robot arrives in the living
room after driving. The second rule represents positive postdiction (T4b): If it is known that the robot arrived in the living room,

then it must be true that the door was open while it was driving. The third rule captures negative postdiction (T4c): If the robot
did not arrive in the living room, then the door must have been closed.

Finally, (T6) generates the executability constraint <— occ(drive, N, B), not knows(in_room, N, N, B)

3.34. Goals (G5 T yout)
Let G = <{lig, - lfﬁq}’ {179, ..., l;‘[gq > denote a pair of sets of goals. Here, {I3%, ..., lfgq} is a set of literals that represent

strong goals, i.e. a set of literals that must be necessarily known to hold (see Eq. ([8, 18)]), given a domain and a plan. Further,
{179, ..., 139 }is a set of literals that represent weak goals, i.e. the literals must be possibly known to hold (see Eq. ([8, 19)]). With
these specifications, the logic program contains facts generated by T7.

wGoal(ly?) ... wGoal(ly?) (T7a)
sGoal(l7?) ... sGoal(l?) (T7b)

These facts are used to trigger integrity constraints (F6a) and (F6d) of the domain independent theory that rule out those stable
models where the goals are not achieved.

3.4. Thpe — Foundational Theory (F1) —(F7)
The foundational domain independent P X -theory covers auxiliaries (F1), concurrency (F2), inertia (F3), inference mechanisms
(F4), sensing (F5), plan verification (F6) as well as plan generation and optimization (F7).

F1. Preliminaries and Auxiliary Definitions (I',,,) First, the maximal plan length and with is defined by instantiating atoms
for steps (s) and branches (br) (Fla). Here, maxs and maxBr are constants of which the value is passed to the logic program at
execution time. To speed up the solving process we precompute inequality of branch labels with (F1b).

S(O..maxs) bT(O..maxBr) (Fla)
neq(Bl,Bg) < Bl # BQ,bT(Bl),bT(BQ) (Flb)
In (F1c) we declare fluents f and their negations neg(f) as literals, and we define the complement of literals.?
literal(neg(F)) < fluent(F) literal(F) < fluent(F) (Flo)
c
complement(neg(F), F) « fluent(F) complement (L1, Ly) < complement(Ls, L1)

F2. Concurrency (I'.,,,.) Concurrency and the abstraction of effect propositions from actions is implemented as follows:

apply(EP, N, B) + hasEP(A, EP), occ(A, N, B) (F2a)
— apply(EP,, T, B), hasEff (EPy, L), apply(EP», T, B), hasEff (EP,, L), EP, # EPs, br(B), literal(L) (F2b)

Rule (F2a) applies all effect propositions of an action a if that action occurs. (F2b) is a restriction concerning the application of
similar effect propositions: two effect propositions are similar if they have the same effect literal. The restriction is necessary,
because otherwise the positive postdiction rule (T4b) and the inertia law (F3) would not work correctly. An explanation is given
with the corresponding rules F3, T4b.

F3. Inertia (I';,,) Inertia is applied in both forward and backward direction similar to [13]. To formalize this, we need a notion
on knowing that a literal is not set by an action. This is expressed with the predicate kNotSet.

kNotSet(L,T, N, B) <—not kMaySet(L,T, B), uBr(N, B), s(T), literal (L) (F3a)
kMaySet(L,T, B) <apply(EP, T, B), hasEff (EP, L) (F3b)
kNotSet(L,T, N, B) <—apply(EP, T, B), hasCond(EP, L"), hasEff (EP, L), (F3¢)

knows(L',T, N, B),complement(L',L'), N >=T.

A literal could be known to be not set for two reasons: 1) if no effect proposition with the respective effect literal is applied, then
this fluent can not be initiated. kMaySet(l,t,b) (F3b) represents that at ¢ an EP with the effect literal [is applied in branch b. If
kMaySet(l,t,b) does not hold then [is known not to be set at ¢ in b (F3a). 2) a literal is known not to be set if an effect proposition
with that literal is applied, but one of its conditions is known not to hold (F3c). Note that this requires the concurrency restriction
(F2b), because without that restriction a literal could still be set by another effect proposition. We can now formulate forward
inertia (F3d) and backward inertia (F3e) as follows. Atoms kFwdInertia/4 represent knowledge gained by forward inertia and
atoms kBackInertia/4 represent knowledge gained by backward inertia.

kFwdInertia(L, T, N, B) <knows(L,T — 1, N, B)kNotSet(L,T — 1, N, B), complement(L,L),T < N (F3d)
kBackInertia(L, T, N, B) +knows(L,T + 1, N, B), kNotSet(L,T,N,B),N > T (F3e)

Inertia is represented as inference mechanisms IM.1 (forward inertia) and IM.2 (backward inertia) in [8, Egs. (9), (10)]. The above
inertia rules refer to a mental operation of inferring the temporal propagation of facts within an agent’s knowledge. In addition, the
operational semantics of HP X implies that knowledge itself is inertial (see [8, Lemma 5]). That is, if at 7 it is known that [holds
at ¢, then this is also known at n 4 1. Inertia of knowledge implemented as follows:

knows(L, T, N, B) < knows(L, T,N — 1, B), N < maxs (F3f)

F4. Inference mechanisms (I';,s.-) The following rules are required to transfer the result of causation and positive and negative
postdiction to knowledge.

knows(L, T, N, B) < kFwdInertia(L, T, N, B) (F4a)
knows(L, T, N, B) « kBackInertia(L, T, N, B) (F4b)
knows(L, T, N, B) + kCause(L, T, N, B) (F4c)
knows(L, T, N, B) < kPosPost(L, T, N, B) (F4d)
knows(L, T, N, B) < kNegPost(L, T, N, B) (F4e)

3Recall, that we often write — f as a shorthand for neg(f) to denote the negation of a fluent.

F5. Sensing and Branching (I',.,,sc) If sensing occurs, then each possible outcome of the sensing is assigned to a different
branch, where uBr(n, b) denotes that branch b is used at step n. Initially, only branch 0 is used (F5a).

sNextBr (F5b) is an auxiliary predicate to denote that sensing produced a child branch. This is used in (F5c), which denotes that if
no sensing result was produced, then a branch that was used in the past (at n — 1) is used now (at n). If sensing did produce a child
branch, i.e. if sNextBr(n,b) is triggered, then uBr(n, b") will be set by (F5j), where b’ is the child branch’s label.

uBr(0,0) (F5a)
sNextBr(N, B) < sRes(L,N, B, B) (F5b)
uBr(N, B) < uBr(N — 1, B),not sNextBr(N — 1, B), s(N) (F5¢)

An auxiliary predicate kw (F5d),(F5e) is an abbreviation for knowing whether:

kw(F,T, N, B) < knows(F,T,N, B). (F5d)
kw(F,T, N, B) « knows(—F,T, N, B). (F5e)

Next we describe the key rules that generate the sensing results, i.e. the s Res atoms: atoms occ(a, n, b), hasK P(a, f) denote that a
sensing action with the knowledge proposition f occurs at step n in branch b. Sensing generates two branches. The positive sensing
result is assigned to the original branch via (F5f). However, the sensing result it generated only if the negative sensing result is not
already known to hold.

For the negative result, the choice rule (F5g) “picks” a valid child branch. It must be restricted that two sensing actions which occur
at the same step 7 but in different branches b pick the same child branch (F5h). It must further be restricted that the negative sensing
result is not assigned to already used branches (F51i).

sRes(F,N, B, B) <—occ(A, N, B), hasKP(A, F),not kw(F,N,N, B) (F5f)

1{sRes(—F, N, B, B') : neq(B, B')}1 +-occ(A, N, B), hasKP (A, F),not kw(F, N, N, B) (F5g)
+2{sRes(L,N,B,B’) : br(B) : literal (L)}, br(B’), step(N) (F5h)

<sRes(L,N, B, B"),uBr(N, B"), literal (L), neq(B, B) (F5i)

If an sRes atom is produced, then the assigned branch is marked as used (F5j). Sensing results affect knowledge through (F5k).
Note, that like in the sense function [8, Eq. (7)] of the operational semantics, sensing yields the value of a fluent at the time it was
changed, i.e. at N — 1 and not at N.

Finally, we need to implement the HP X -restriction that two fluents can not be sensed concurrently, because this would cuas an
exponential growth of the search tree, as described in [8, Eq. (7)]. This restriction is realized with (F51).

uBr(N, B’) +—sRes(L, N — 1, B, B'), s(N). (F5j)
knows(L,N —1,N, B") <~sRes(L, N — 1, B, B"), s(N). (F5k)
2{occ(A,N, B) : hasKP(A,_)},br(B), s(N). (Fs1)

In order to to apply postdiction, causation and inertia rules to a child branch resulting from a sensing action, the child branch has
to inherit knowledge (F5m) and application of EPs (F5n) from the parent branch.

knows(L,T,N,B’) +~sRes(.,N —1,B,B’), B # B, knows(L,T,N —1,B),N > T (F5m)
apply(EP,T,B") <sRes(_,N, B, B'), B # B'apply(EP,T,B),N > T (F5n)

F6. Plan Verification (I',¢ir,) The ASP formalization supports both weak and strong goals. For weak goals there must exist
one leaf where all goal literals are achieved and for strong goals the goal literals must be achieved in all leafs. Weak or strong goals
are declared with the wGoal and sGoal predicates and defined through translation rules (T7). (F6a) defines atoms not WG (n, b)
which denote that a weak goal is not achieved at step n in branch b. An atom allWGAchieved(N) reflects whether all weak goals
are achieved at a step [V (F6b). If they are not achieved at step maxs, then a corresponding model is not stable (Féc).

notWG(N, B) «<—wGoal(L),uBr(N, B),not knows(L, N, N, B), literal(L). (F6a)
allWGAchieved(N) <—not notWG (N, B),uBr(N, B). (F6b)
+not allWGAchieved (naxs). (F6¢)

Similarly, notSG(n, b) denotes that a strong goal is not achived at step n in branch b (F6d). In contrast to weak goals, strong goals
must be achieved in all used branches at the final step maxs (F6e).

notSG(N, B) < sGoal(L),uBr(N, B),not knows(L, N, N, B), literal (L) (F6d)
— nOtSG(maxS, B)7 uBT(maxS, B) (Fée)

Information about nodes where goals are not yet achieved is also generated. This is used in the plan generation part for pruning

(F7a)—(F7b). notGoal(N, B) <notSG(N, B)

F6
notGoal(N, B) «<—notWG(N, B) (F6D)

F7. Plan Generation and Optimization (I';,,) In the generation part of the logic program, (F7a) and (F7b) implement se-
quential and concurrent planning respectively: for concurrent planning the choice rule’s upper bound “1” is simply removed.*
Choice rules are used to “generate” atoms and hence can be interpreted as those mechanisms which span up the search tree (see
[10] for details). Optimal plans in terms of the number of actions are generated with the optimization statement (F7c), at the cost
that computational complexity of the ASP solving raises from NP-completeness to AL’ -completeness (see e.g. [10]).

1{occ(A, N, B) : a(A)}1 +uBr(N, B), notGoal(N, B), N < maxs. (F7a)
1{occ(A,N,B) : a(A)} <uBr(N, B), notGoal(N, B), N < maxs. (F7b)
#minimize{occ(, _,)Q1}. (F7c)

3.5. Plan Extraction from stable models

To formally define how concurrent conditional plans (CCP) relate to stable models, we define a function ¢rans that takes a set of
atoms S and two integer numbers 0 < n < maxs, 0 < b < maxs as input and produces a CCP as output. n and b describe the
position of the plan’s root node in the transition tree, i.e. trans(S, 0,0) yields the conditional plan starting at the initial state.

[] if n = maxs
- lam]: 1 it ~30/, f - - '
tTCLNS(S,’I’L,b) _ [[CLlH ||am],t7‘ans(5,n+ ’b)] 1 b ,f SR@S(f,n7b,b) c S
[[a1]] .- |lam]; if —f then trans(S,n+1,b") if ', f: sRes(—f,n,b,b) € S O
else trans(S,n + 1,b)]

where {a1,...,am} = {alocc(a,n,b) € P} and maxs is a constant that limits the plan depth.
3.6. Relation between the ASP Implementation and the Operational HP X -Semantics

The translation function (7) relates the occurrence of actions in the ASP implementation of HP X’ to state transitions in the opera-
tional semantics but it does not guarantee that the epistemic effects of actions are sound. In the following we investigate the relation
between the operational semantics and the ASP implementation and state a soundness theorem.
As a prerequisite we define the auxiliary function (8) which describe a parent-child-relation between nodes in the transition tree.
Let S be a stable model and 0 < n < maxs, 0 < b < maxB, 0 < ' < maxB be integers which are used to represent nodes in the
transition tree. Then a function which defines whether a branch b’ is a child branch of a node (n, b) wrt. a set of atoms S is defined
as follows:

true if 3l : sRes(l,n,b,b') € S

hasChild(n,b,b", S) { true ifb =0 A—-3l: sRes(l,n,b,t') € S (8)

false otherwise

This is used to define the following ancestor relation:

true if In, b : (ancestor(ni, b1, n,b,S) A hasChild(n,b,ba, S) Ang =n+1)
false otherwise

ancestor(ny, by, na, ba, S) = { 9)

“#In an actual implementation the LP may of course contain only one of these two choice rules, depending on which kind of planning is desired.

We are now ready to define the following auxiliary functions (10) which are used to map atoms in a stable model to nodes in the
transition tree of the operational semantics:

K(n,b,S) = {{,t) |knows(l,t,n,b) € S} (10a)
a(n,b,S) = {{a,t) |3, t: (occ(a,t,b') € S A ancestor(t,b',n,b,S))} (10b)
h(n,b,5) = (a(n,b,5),Kk(n,b,5)) (10c)
€(n,b,5) = e(h(n,d,S)) (10d)

We also presume the following Definition 2 as a notational convention to formally describe the relation between the ASP formal-
ization and the operational semantics.

Definition 2 (Notation to relate ASP implementation and 7{PX semantics).

* maxS and maxB are constants denoting the maximal plan depth and width respectively. 0 < n < maxs, 0 < b < maxB and
0 < V' < maxs denote variables for steps and branches respectively.

* D is a domain description with the initial h-state ¥,

LP(D) is the logic program of a domain description D without without the plan-generation rule (F7) and without the goal
statements generated by translation rule (T7)

 SE is a stable model of LP(D) U P where P is a set of occ(a,n,b) atoms with 0 < n < maxs such that
- Va,n,b: (occ(a,n,b) € S§ = uBr(n,b)).?
- Vn,b: (uBr(n,b) € S = Ja : occ(a,n,b) € SF) ©
o A, , = {alocc(a,n,b) € SEY is a set of actions applied at a transition tree node with the “coordinates” (n,b).

Functions (8) and (10) along with Definition 2 allow us to provide a complete summary of how ASP atoms relate to the operational
‘HPX semantics in Table 1.

The notational conventions allow us to state Theorem 1, which is the core soundness theorem concerning knowledge. It states that
if there exists a branch b’ where a literal [is known to hold in the ASP formalisation, then there exists a leaf in the operational
semantics where [is also known to hold.

Theorem 1 (Soundness for knowledge atoms for single state transitions). For all n,t,b, if there exists a branch b’ such that
hasChild(n,b,b', SE) and knows(l,t,n+1,b") € SE, then there exists an h-state b € V(A,, , h(n,b, SE)) such that by |= (I, t).

Fe Ily:

ormaty ¥n,b,b : (hasChild(n,b,t, SE)) = o
(3h € U(A, 4, H(n,b,Sp)) : Vi t: (knows(l,t,n+1,b') € Sp =h = (I,1)))

Proof sketch: [Complete proof: Appendix B]

We first make a case distinction concerning whether or not 3’ : sRes(l’,n,b,t') € SE. This determines whether

hasChild(n,b, b, Sg) is true and eliminates the 3-quantification over §. Then we perform induction over the structure of the
following implications (12) that result from the stable model semantics and our described ASP implementation, and that are ex-
haustive in producing knowledge about pairs (I, t).

knows(l,t,n + 1,b') € S§ <« (t =0An=-1Ab=0Al¢€ VP) (12a)
knows(l,t,n+ 1,b') € S5 « (knows(l,t —1,n+1,b") € SE ANkNotSet(l,t —1,n+1,0') € SE At <n+ 1) (12b)
knows(l,t,n +1,b) € Sp « (knows(l,t+1,n+ 1,b') € SE AN kNotSet(l,t,n+1,b') € SE At <n+ 1) (12¢)
knows(l,t,n 4+ 1,b') € Sp < knows(l,t,n,b') € Sp (124d)
knows(l,t,n + 1,b') € SE < kCause(l,t,n + 1,b') € S§ (12e)
knows(l,t,n+ 1,b') € Sh « kPosPost(l,t,n + 1,b') € Sh (12f)
knows(l,t,n+ 1,b') € S§ < kNegPost(l,t,n + 1,0') € Sp, (12g)
knows(l,t,n + 1,b') € S5 « (3b: sRes(l,n,b,b) € SE At = n) (12h)
knows(l,t,n + 1,0') € Sf < (3b: (sRes(l',n,b,b') € SH A knows(l,t,n,b) € S5) An > t) (12i)

SThis restriction reflects the mechanics of the plan generation rule (F7) which only generates occ(a, n, b) atoms if uBr(n, b) € Sg.
©This ensures that there are no “gaps” in a plan, i.e. for all nodes in used branches there occurs at least one action. Note that this restriction is met for all occ/3
atoms which are generated by the plan generation rule (F7).

10

ASP formalization Operational semantics

Core predicates

Knowledge knows(l,t,n +1,V) € SE (I,t) € k(h) Theorem 1
Inertial fluents kNotSet(l,t,n +1,V') € S§ inertial(l,t,) Lemma 1
App. of EP apply(ep,t,b') € SE (ep,t) € €(B) Lemma 4
Sensing sRes(l,n,b,t') € SE (I,n) € sense(App, h(n,b, SE)) Lemma 7
Action occ. occ(a,n,b) € S a€ A,y Definition 2

Inference mechanisms

Forward inertia kFwdInertia(l,t,n,b') € S5 (I,t) € addfywa(h)
Backward inertia kBackInertia(l,t,n,b') € S5 (1,t) € addpacr(H)
Causation kCause(l,t,n,b') € SE (I, t) € addequse(B)
Positive postdiction kPosPost(l,t,n, V') € SE (I, t) € addpgros: (b)
Negative postdiction kNegPost(l,t,n, V') € SE (1,t) € addpgnes (B)

where b’ such that hasChild(n,b,V', SF)) where b € W(A,, 5, h(n,b, SE)
and t < n. and t < n.

Aucxiliary predicates

Effect proposition hasEP(a,ep) € SE ep € EP® Lemma 9
Effect literal hasEff (ep, f) € SE elep) = f Lemma 9
Condition literal hasCond(ep, f) € SE f € c(ep) Lemma 9
Knowledge proposition | hasKP(a, f) € SE determines(a, f) € D Lemma 9

Table 1: Relation between ASP formalization of HP X and its operational semantics

These implications emerge from the HPAX'-logic program rules due to the stable model semantics: an atom can only exist in a
stable model if it is in the head of an LP rule in which the body is compatible with the stable model. Implications (12a), (12d),
(12h) and (12i) produce knowledge about pairs (I,t) independently from knowledge about other pairs (I, ¢') for fixed n, . That
is, to produce knows(l,t,n + 1,b") these implications do not directly depend on an atom knows(l’,t',n + 1,b’) in their body.
This independence allows us to perform base steps for these rules. The base steps are derived with simple substitutions. For the
rules that concern forward inertia (12b), backward inertia (12c), causation (12e), positive postdiction (12f) and negative postdiction
(12g) we perform induction steps. The induction is complete because we consider all LP rules which can eventually generate a
knows /4 -atom. That is, all possible knows(l,t,n + 1,b’) atoms are reached for arbitrary n, b. O

The Lemmata which we mention in Table 1 are defined and proven in Appendix B. The results concern only soundness of the ASP
implementation wrt. the operational semantics. Completeness results are not provided because the ASP implementation is incom-
plete wrt. the operational semantics. The reason for incompleteness is that we have not found a solution to model the quantifications
in the inertia and positive postdiction mechanisms of the operational semantics in terms of ASP. We address the incompleteness
issue by demonstrating that the solvable fragment of the ASP implementation is useful. To this end, we conduct an empirical
evaluation (Section 4.1), and we provide an extensive case study (Section 4.2), both based on the ASP implementation.

4. Empirical Evaluation, and a Case Study with a Robotic Wheelchair in a Smart Home

By approximating the PWWS-based approach of epistemic action theory we trade completeness for better computational complexity
properties, and hence better computational performance. To this end, we are interested in how good this trade-off really is, i.e. how
much performance is gained in relation to the number of problem instances that become unsolvable by the approximation. We show
empirically that indeed merely around 15% of the problem instances within the investigated parameter space become unsolvable,

11

while the remaining 85% are solvable much more efficiently, i.e. in polynomial time.” Note that we consider projection problems
in our evaluation, because they are much more fundamental then planning problems. The solvable fragment of planning problems
depends on the solvable fragment of projection problems, and therefore, evaluating the projection problem instead of the planning
problem, gives a much clearer view on the usefulness of our approach.

In addition to the empirical evaluation we demonstrate the reasonability of the solvable fragment by presenting a case study
where HPX is used for action planning, abnormality detection and postdictive explanation in a real robotic smart home, namely
the Bremen Ambient Assisted Living Lab (BAALL) [16]. We emphasize that postdiction is a crucial requirement to diagnose
abnormalities in the scenario. Other approximations, e.g. the 0-approximation or the w-approximation [26], are — in their basic
form — not capable of solving the required reasoning tasks, because they do not support postdiction.?

4.1. Trading Completeness for Efficiency: Empirical Evaluation

In order to evaluate the solvable fragment of projection problems empirically, we count the number of pairs (I, n) (denoted nypx)
that occur in the leaf state of a transition tree that is generated by HP X, given a domain D and a plan p of depth n. We compare this
number with the number of fluent literals (denoted npyy.s) that are known to hold after applying the same plan in the same domain
under a PWS-based semantics. To realize this experiment, we employ a naive implementation of the A; semantics without static
causal laws as answer set programming. The size of the solvable fragment with respect to a PYVS-based approach is quantified by
computing the knowledge quotient k,p; = ?ﬂi for variable plan depth and a variable number of fluents.

The result is illustrated in the 3d-graph in Figure 1, with the number of actions on the x-axis, the number of fluents on the y-axis,

and the knowledge quotient k7, on the z-axis.

4.1.1. Problem instances
For our experiments, we implemented a random problem generator to produce domains and plans within a finite problem space
that is spanned by the following parameters:

e Number of fluents

* Number of actions in the narrative

* Fraction of sensing actions in the narrative

e Max. number of conditions per effect proposition
A problem with evaluations based on random problem generation is that the results might not be very realistic and reasonable.
Therefore we respect a reasonability heuristic for problem instances that is based on heuristics known from action planning. This
involves (among other aspects detailed below) assuring that a fluent is not sensed if it is already known, and an action with an effect
that is already known to hold is not executed. For example, a reasonable agent would not open a door if it knows that the door is
already open, nor would it sense the open-state of the door if it already knows whether the door is open or closed. We also assure
that all problem instances are consistent in the sense of [8, Definition 6]. Overall, we make the following restrictions:

1. Fluents that are already known to hold are not sensed.
An action is not executed if all of its effects are already known to hold.
Actions do not have contradictory effects.
Actions do not have contradictory conditions.

An action is not executed if at least one of its conditions is known not to hold.

A

An action is not executed if all its conditions are known to hold and the knowledge state that would result from executing the
action has already been reached before.’

All applied restrictions resemble common heuristics used in action planning. We provide an example of a randomly generated
problem instance in Appendix A.2.

"This percentage holds for cases with 11 fluents and sequences of 28 actions, where 25% of all actions are sensing actions. Similar results are achieved for other
parametrizations; consider Section 4.1 for details.

81n principle, the extended 0-approximation semantics by [27] allows one to work around this problem by using static causal laws. However, as we demonstrate
in [8, Example 4], this approach is not elaboration tolerant.

9This is necessary to avoid cyclic state transitions, such as a door that is is opened and closed over and over again. The restriction that at least one condition of
an action that leads to an already reached knowledge state must be unknown assures, that the action has at least the potential to trigger additional knowledge gain
about the condition by means of postdiction.

12

4.1.2. Evaluation

Recall that our evaluation of the solvable fragment is based on the number of known fluents in a leaf state of the transition tree that
emerges from a domain D and a plan p. In order to compare the number of known fluents generated by HPAX with the number
of known fluents generated by our naive .4;, implementation, it not necessary to compare all leaf states in the transition tree; it is
sufficient to compare only one leaf state and to compute the quotient ky,,,. for this state. This simplifies the reasoning process in
that we only have to consider one valid model in the 4;, semantics.

In terms of the ASP implementation of HPX, the simplification means that we have to disable the branching mechanism. That
is, for a sensing action described through a knowledge proposition determines(as, f*), we model the occurrence of as at a step
n in a branch b not only by adding the atom occ(as,n,b) to the logic program, but also by adding an atom knows(f*®,n,n,b)
or knows(—f*,n,n,b). According to (F5f) and (F5g), this prevents the generation of sRes/4 atoms and hence the generation of
branches. This behavior is therefore equivalent to considering only one rational model (see [26, Def. 4])'° in the A;, semantics.
To obtain significant data, we run 40 random problem instances per parametrization and compute the average computation time
and number of known fluents in the stable models of both ASP implementations, i.e. the ASP formalization of HP A" and our naive
Ay, implementation. The computations were performed using the ASP solver clingo v. 3.05 [11], on a Intel i7 machine at 2400 Mhz
with 4GB RAM.

4.1.3. Results

We are interested in the size of the solvable fragment generated by HPA" in relation to the PWS-based A, semantics and in
performance gain. To this end, we ran the random problem generator for different parametrizations and computed the average
computation time and fraction of known fluents over 30 runs for each parametrization. Figure 1 represents the fraction of knowledge
generated by HPX wrt. Ay, for a narrative with up to 30 actions and a domain with up to 12 fluents. 25% of actions (rounded
down) in the narratives were sensing actions, and all effect propositions in the domain had up to three condition literals. The
order of sensing and non-sensing actions was random. Since the more actions that occur, the more fluent values are known after
action execution, there exist no reasonable narratives for cases where the number of actions is high wrt. the number of fluents. In
consequence, the graph area does not display data for such cases.

» Solvable fragment. For most reasonable narratives, the solvable fragment is above 85%, in particular for domains with many
fluents and few actions. The solvable fragment of our approach is only significantly smaller in extreme cases, where the number of
actions is ver high compared to the number of fluents. As an example, consider the case where 11 actions are executed in a domain
with only 3 fluents. Here our approach generates knowledge for 40% of all fluents in average, compared to 4. Even though our
reasonability heuristic is still respected in such cases, we think that respective problems are still quite uncommon in reality; in
particular for planning purposes where the number of actions is usually kept as small as possible.

We should also mention that we tried other values for the fraction of sensing actions and the number of condition literals, but we
could not observe significant effects of these parameters on the average size of the solvable fragment.

» Computational performance. In addition to the size of the solvable fragment of HPX we are interested in the gain of
computational performance that results from the better complexity properties compared to a naive PWWS-based approach. This is
illustrated in Figure 2. The z-axis represents how many times HPX is faster than the PYVS-based naive implementation of Ay,
depending on the number of actions and the number of fluents per problem instance. The logarithmic scale is required to capture
the exponential nature of A;. Note that for problems with less than four actions and four fluents no meaningful comparison of
performance is possible, because such problems were solved in less than one millisecond. We use the same parametrization as for
the experiment to determine the solvable fragment, i.e. 25% sensing actions and up to three condition literals per effect proposition.
We also tried alternative parametrizations, and found that these produce similar results.

The measured computation time involves ASP preprocessing, grounding and solving. It turns out that grounding takes most time.
In particular for .4, where grounding generates the exponential number of possible worlds — a step that is not required in HPX'.
For example, for an 4;, problem instance with 12 fluents and 25 actions, clingo took 56.78 sec. in total, where 18.46 sec. were
required for preprocessing, 38.31 sec. for grounding and 0.01 sec. for the actual solving. The same problem instance for HP X" was
solved 25 times faster. It took 0.73 sec. in total, where 0.67 sec. was preprocessing, 0.05 sec. grounding and 0.01 sec. solving time.

4.2. Case Study: Abnormality Detection in a Smart Home

To demonstrate the general usefulness of postdictive reasoning we present a use case as depicted in Figure 3. The illustrated
scenario is fully implemented for the Bremen Ambient Assisted Living Lab (BAALL), i.e. the ASP solver directly controls doors

10Considering only one model intuitively means to consider one possible world in which an agent with incomplete knowledge acts. The agent’s incomplete
knowledge is modelled with multiple possible worlds that are compatible with the actually considered possible world. For example, if it is unknown whether a door
is open or closed, then this results in two possible worlds. We select one of these worlds (one rational model) and model an agent’s incomplete knowledge about
this world model again by multiple possible worlds. For details consider [26].

13

solvable fragment

COO000000

NWhAUION O
COO00O0000oH
NWwhUoON®©

0

15 # fluents

20
actions in narrative

25

30

Figure 1: Solvable fragment of HPX wrt. Ay.

performance gain g

100000
100000 - 10000
10000 ¢ 1000
1000 © 100
100 £ 10
10 - 1
1 b 0.1

0.1 F

fluents
15 20

actions in narrative

25 4

30

Figure 2: Performance gain in relation to number of actions and number of fluents per domain

and the wheelchair in the BAALL.!' The BAALL has (automatic) sliding doors, and sometimes an obstacle (e.g. a box or a chair)
accidentally blocks the door such that it opens only half way. In this case, the planning component in the overall system should be
able to postdict such an abnormality and to find an alternative route for robotic vehicles which would usually pass through the door.
A simplified domain description is as follows:

initially (—is_open

(Dpaart)

)
causes (drive, in_1iv, is_open)
Dpaarr =)

causes (open_door, is_open, 7jammed

determines (sense_open, is_open)

An action open_door causes a door to be open if it is not jammed. The action drive has the effect that the robot is in the living room

1A video demonstration providing a general overview of the kinds robot control scenarios that we address with the BAALL Lab / wheelchair robot can be
accessed at http://www.manfred.eppe.eu/the-hpx-online-planning-system/ (please note that the exact scenario in the video corresponds to
a minor variation of the domain theory presented in the case-study).

14

http://www.manfred.eppe.eu/the-hpx-online-planning-system/

D2 D4
[So): Wheelchalr is called using v Bed
i S o

remote control or other input de- S

. P N Ql I room
vice.
Living room

@7

D3

[S1]: Door is jammed.

D D4
: Corr. 2
[S2]: Wheelchair takes alterna- s = () 7
tive route. D1 Cbrr. 1
Living ro
ﬂ:E
Bed
B Bath room
room

[S3]: Destination reached.

Figure 3: Case study: abnormality detection in the smart home BAALL

(which is behind the door) if the door is open. sense_open can be executed to determine the open-state of the door. Initially the
door is closed, and the goal of a corresponding planning task is that the wheelchair must arrive in the living room. Consequently,
we query for a plan where the fluent in_1iv must be true in at least one leaf state of the transition tree. For simplicity, we have no
executability conditions in this case.

Trace: Conditional Planning with Abnormalitiy Postdiction

Consider the situation where a person instructs a command to reach a location, e.g. the sofa, to the wheelchair [Sp]. An optimal
plan to achieve this goal is to pass D1. However, if D1 does not open because it is jammed, then a more error tolerant plan is
required: [.S1] open D1 and verify if the action succeeded by sensing the door status. If the door is open, drive through the door and

{...,knows(—in_1iv, 0,0, 0),
knows(—is_open, 0,0,0)}

LP(D)g U occ(open-door, 0,0) I";,, (inertia)
I

1 (F3d)

{.. knows(ﬁin,lil\/, 0,1,0), k"n()’ws(ﬁin,li‘l/v7 1,1,0),

knows(—is_open, 0,1, 0) }
LP(D)l U OCC(sense,open7 1, 0) Tsense (sensing)
{....,knows(—in_1iv, 0, 2,0), knows(—in-liv,1,2,0), knows(—in-liv,2,2,0),
knows(—is_open,0,2,0), knows(is_open,1,2,0), (ﬂ knows(is-open, 2,2, 0),
knows(—jammed, 0, 2, 0), knows(—jammed, 1, 2,0), knows(—jammed, 2, 2,0),
@ | Tyt (pos. postdiction)
knows(—in_1iv, 0,2, 1), knows(—in_liv,1,2,1), knows(—in_liv, 2,2,1),
knows(—is_open,0,2,1), knows(—is_open,1,2, l),(ﬂ knows(—is-open,2,2,1),
knows(jammed, 0,2, 1), knows(jammgd, 1,2, 1), knows(jammed, 2,2,1)}
o | Laet (neg. postdiction)
LP(D)s U oce(drive, 2,0) 1"t (causation)
(T4a)

{...,knows(—in_1iv, 1,3,0), knows(—-infliv,2,3,0), knows(in_liy,3,3,0),
SM of knows(is-open,1,3,0), knows(is-open, 2, 3,0), knows(is_open, 3, 3, 0),

LP(D)s

knows(—jammed, 1,3,0), knows(—jammed,2,3,0), knows(—jammed,3,3,0)}

Figure 4: Abnormality detection as postdiction with h-approximation

approach the user. Else there is an abnormality: in this case open and pass D3 [S2]; drive through the bedroom; pass D4 and D2;
and finally approach the sofa [S3].!? A transition tree is provided in Figure 4.

Initially, wheelchair Rolland is outside the living room (—in_1iv) and the weak goal is that the robot is inside the living room.
The robot can open the door (open_door) to the living room. Unfortunately, since the door may be jammed, opening the door does
not always work, i.e. there may be an abnormality. However, the robot can perform sensing to verify whether the door is open
(sense_open) and then postdict whether or not there is an abnormality in opening the door.

This mechanism is illustrated in Figure 4. Initially (at step n = 0 and branch b = 0) it is known that the robot is in the cor-
ridor at step ¢ = 0 (denoted by knows(—in_1iv,0,0)). The first action is opening the door, i.e. the stable model contains the
atom occ(open_door, 0,0). Inertia holds for —in_1iv, because nothing happened that could have initiated in_1iv. Consequently,
rules (F3a) — (F3c) trigger kNotInit(in_1iv,0,0,0) and (F3f) triggers knows(—in_1iv,0, 1,0). In turn, the forward inertia rule
(F3d) causes atom knows(—in-1iv, 1,1, 0) to hold. Next, sensing happens, i.e. occ(sense_open, 1,0). According to rule (F5f), the
positive result is assigned to the original branch and sRes(is_open, 1, 0, 0) is produced. With rule (F5g), the negative sensing
result is assigned to some child branch ¥’ = 1. In the example we have sRes(—is_open,1,0,1), such that together with (F5k)
knows(—1is_open, 1,2, 1) is produced. This result triggers the negative postdiction rule (T4c) and knowledge about an abnormality
concerning the opening of the door is produced: knows(jammed, 0,2, 1). Consequently, the wheelchair has to follow another route
to achieve the goal.

For branch 0, we have knows(is-open,1,2,0) after the sensing. This result triggers the positive postdiction rule (T4b): because
knows(—is_open, 0,2,0) and knows(is_open,1,2,0) hold, one can postdict that there was no abnormality when open_door oc-
curred: knows(—jammed, 0, 2, 0). Finally, the robot can drive through the door: occ(drive, 2,0) and the causation rule (T4a) triggers
knowledge that the robot is in the living room at step 3: knows(in_1iv,3,3,0).

5. Conclusion and Outlook

We demonstrate how the h-approximation (H'PX), an epistemic action theory based on knowledge histories that is presented in
[8], can be implemented in the declarative non-monotonic framework of answer set programming (ASP) [2]. HPX has a lower
computational complexity than action theories based on a possible worlds semantics, which comes at the cost that the theory is
not complete. The implementation presented in this work contributes to the state of the art by allowing us to perform an empirical
evaluation concerning the solvable solvable fragment of the HPX approach. The result of this evaluation is, that approximately
85% of knowledge generated with an exponential approach based on possible worlds can also be generated with HP X for most of

12 Abnormalities are considered on the alternative route as well but skipped here for brevity.

16

the parameterizations described in Sec. 4.1. We consider this to be a good tradeoff when looking at the theoretical and empirical
complexity results, which show that in the polynomial complexity hierarchy, HPX is one level below comparable PWWS-based
approaches like the language A;[26] (NP in HPX vs. B in A, for the planning problem). In other words, by using HPX and
going down a whole complexity class in the polynomial hierarchy, one can still find 85% of solutions for most planning problem
instances.

As future work, it would be interesting to investigate this relation with other epistemic action theories like the 0-approximation of
knowledge [26] or the EFEC formalism [19]. In particular EFEC is an interesting candidate, since it also considers the temporal
knowledge dimension that we advocate.

In addition to the empirical evaluation concernig the solvable fragment, we also demonstrate the general usefulness of HPX and
its postdictive reasoning capabilities for diagnosis tasks. Towards this, we present a case study to demonstrate how abnormalities
are diagnosed and accounted for within a real-time robot control task in a smart home (see Section 4.2).

The ASP implementation of the HPX reasoning system provides a robust, declarative framework to further extend and apply our
reasoning system from the viewpoint of incorporating new features (e.g., functional fluents using ASPMT [3]), and reaching out to
other research communities where reasoning about action and change using KR-based methods could be valuable. Indeed, comput-
ing explanations and establishing hypotheses based on observations and partial knowledge is an important capability essential in a
wide range of applications. Robotics has been chosen as a prime area of demonstration in this paper; however, it is by no means
the only one, or the most important. As described in [8], we envision other areas and domains of applications where a general ca-
pability to compute explanations and establish hypotheses exist. As an example consider (i) decision support systems in the field of
medicine, (ii) dynamic geospatial systems where changes in qualitative spatio-temporal relationships between complex aggregate
entities at the geospatial scale need to be analysed using high-level commonsense reasoning [4], (iii) spatial design cognition and
computation, which has the need to perform diagnosis and compute counterfactual scenarios for incremental or iterative design
refinementand, or, (iv) assistive technologies in crime, forensics, and legal reasoning, which often involve perspective-dependent
narratives of temporally grounded beliefs, and the formation of new beliefs or invalidation of old beliefs based on new knowledge.

Acknowledgements

Manfred Eppe acknowledges funding by the German Research Foundation (DFG) via the International Research Training Group
on Semantic Integration of Geospatial Information (IRTG-SIGI), as well as funding by the Spanish National Research Council
(CSIC) and the German Academic Exchange Service (DAAD). Mehul Bhatt acknowledges the funding and support of the German
Research Foundation (DFG), www.dfg.de as part of the Spatial Cognition Research (SFB/TR 8). We thank Joohyung Lee for his
review and feedback on this research; especially for his valuable comments concerning the soundness proofs. We thank Bernd
Krieg-Briickner and other DFKI colleagues for providing support with the BAALL environment; in particular, Christian Mandel
and Bernd Gersdorf provided support with the robotic infrastructure of the Rolland wheelchair robot. We also thank Brian Tietzen
for his programming support and technical help in the context of the BAALL environment. This article has been built upon the
following papers at LPNMR 2013 and COMMONSENSE 2013:

* “Approximate Epistemic Planning with Postdiction as Answer-Set Programming” [9]

» “Narrative based postditive reasoning for Cognitive Robotics” [7]

We thank the anonymous reviewers of these papers for their constructive comments and suggestions. We also thank the anonymous
editors and reviewers of previous versions of this article.

17

References

[1] Babb, J., & Lee, J. (2013). Cplus2ASP : Computing Action Language C + in Answer Set Programming. In International
Conference on Logic Programming and Nonmonotonic Reasoning.

[2] Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press.

[3] Bartholomew, M., & Lee, J. (2013). Functional stable model semantics and answer set programming modulo theories. In
Proceedings of the International Joint Conference on Artificial Intelligence.

[4] Bhatt, M., & Wallgruen, J. O. (2013). Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning
for High-level Analyses in Geographic Information Systems. In D. Rocchini (Ed.), Draft of article to appear at: ISPRS
International Journal of Geo-Information; Special Issue on: Geospatial Monitoring and Modelling of Environmental Change.
arXiv — Cornell University Library. (draft available on arXiv).

[5] Brachman, R.J., & Levesque, H. J. (2004). Knowledge Representation and Reasoning. Elsevier.

[6] Davis, E. (1990). Representations of Common Sense Knowledge. The Morgan Kaufmann Series in Representation and
Reasoning. Elsevier Science Limited.

[71 Eppe, M., & Bhatt, M. (2013). Narrative based Postdictive Reasoning for Cognitive Robotics. In /1th International Sympo-
sium on Logical Formalizations of Commonsense Reasoning.

[8]1 Eppe, M., & Bhatt, M. (2015). A history based approximate epistemic action theory for efficient postdictive reasoning.
Journal of Applied Logic, this issue.

[9] Eppe, M., Bhatt, M., & Dylla, F. (2013). Approximate Epistemic Planning with Postdiction as Answer-Set Programming. In
Prodeedings of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning.

[10] Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer Set Solving in Practice. Morgan and Claypool.

[11] Gebser, M., Kaminski, R., Konig, A., & Schaub, T. (2011). Advances in gringo series 3. In Proceedings of the 11th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning X.

[12] Gelfond, M., & Lifschitz, V. (1988). The Stable Model Semantics for Logic Programming. In Proceedings of the International
Conference on Logic Programming (ICLP).

[13] Gelfond, M., & Lifschitz, V. (1993). Representing action and change by logic programs. The Journal of Logic Programming,
17,301-321.

[14] Gelfond, M., & Lifschitz, V. (1998). Action languages. Electronic Transactions on Artificial Intelligence, 3, 1-23.

[15] van Harmelen, F., van Harmelen, F., Lifschitz, V., & Porter, B. (2007). Handbook of Knowledge Representation. San Diego,
USA: Elsevier Science.

[16] Krieg-Briickner, B., Rofer, T., Shi, H., & Gersdorf, B. (2010). Mobility Assistance in the Bremen Ambient Assisted Living
Lab. GeroPsych: The Journal of Gerontopsychology and Geriatric Psychiatry, 23, 121-130.

[17] Lee, J., & Palla, R. (2010). Situation calculus as answer set programming. AAAI Proceedings, .

[18] Lee, J., & Palla, R. (2012). Reformulating the situation calculus and the event calculus in the general theory of stable models
and in answer set programming. Journal of Artificial Intelligence Research, 43, 571-620.

[19] Ma, J., Miller, R., Morgenstern, L., & Patkos, T. (2013). An Epistemic Event Calculus for ASP-based Reasoning About
Knowledge of the Past, Present and Future. In International Conference on Logic for Programming, Artificial Intelligence
and Reasoning.

[20] McCarthy, J., & Hayes, P. (1969). Some philosophical problems from the standpoint of artificial intelligence. Machine
intelligence, 4, 463-502.

[21] Moore, R. C. (1985). A formal theory of knowledge and action. In J. Hobbs, & R. C. Moore (Eds.), Formal theories of the
commonsense world. Norwood, NJ: Ablex.

[22] Mueller, E. (2004). Event Calculus Reasoning Through Satisfiability. Journal of Logic and Computation, 14.

18

(23]
[24]

[25]
[26]

(27]

Mueller, E. (2005). Commonsense reasoning. Morgan Kaufmann.

Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for

goal regression. In V. Lifschitz (Ed.), Artificial intelligence and mathematical theory of computation (pp. 359-380). Academic
Press Professional, Inc.

Scherl, R. B., & Levesque, H. J. (2003). Knowledge, action, and the frame problem. Artificial Intelligence, 144, 1-39.

Son, T. C., & Baral, C. (2001). Formalizing sensing actions - A transition function based approach. Artificial Intelligence,
125, 19-91.

Tu, P. H,, Son, T. C., & Baral, C. (2007). Reasoning and planning with sensing actions, incomplete information, and static
causal laws using answer set programming. Theory and Practice of Logic Programming, 7, 377-450.

19

Appendix A. Source Code

Appendix A.1. Foundational Theory of the Offline ASP Formalization of HPX

The foundational part of the ASP formalization is provided in Listing 1. Note that for brevity we use a predicate 1/1 instead of
literal/1 to denote literal declarations, and similarly £/1 instead of fluent /1.

Listing 1: Foundational theory (I'j, 44) of the ASP implementation of HPX

» Fl. Auxiliaries (['quz)
s(0..maxS) .
br (0. .maxBr) .

neq(B,Bl) :— B != Bl, br(B), br(Bl).
l(neg(F)):— £(F).

1(F):— £(F).

complement (neg (F),F) :— £(F).
complement (L1,L2) :- complement (L2,L1).

© X 9 WM B W N —

10 » F2. Concurrency (I'conc)
1 apply(EP,N,B) :- hasEP(A,EP), occ(A,N,B).
12 :— apply (EP1,T,B), hasEff(EP1,L), apply(EP2,T,B), hastgff (EP2,L), EPl != EP2, br(B), 1(L).

14 » F3. Inertia (I';,)

15 kNotSet (L,T,N,B) :- not kMaySet(L,T,B), uBr(N,B), s(T),1l(L).

16 kMaySet (L,T,B) :- apply(EP,T,B), hasiEff (EP,L).

17 kNotSet (L,T,N,B) :- apply(EP,T,B), haskEff(EP,L), hasCond(EP,Ll1l), knows(L2,T,N,B), complement (L1l,L2),s(T).
18 knows(L,T,N,B) :- knows(L,T-1,N,B), kNotSet(L1l,T-1,N,B), complement (L,L1), T<=N.

19 knows(L,T,N,B) :- knows(L,T+1,N,B), kNotSet(L,T,N,B), N > T.

20 knows(L,T,N,B) :- knows(L,T,N-1,B), uBr(N,B), N <= maxS.

» » F5. Sensing and Branching (['sense)
23 uBr(0,0).

24 sNextBr(N,B) :- sRes(L,N,B,Bl).

25 uBr(N,B) :- uBr(N-1,B), not sNextBr(N-1,B), s (N).

% kw(F,T,N,B) :- knows(F,T,N,B).

27 kw(F,T,N,B) :- knows(neg(¥F),T,N,B).

28 sRes(F,N,B,B):-occ(A,N,B),hasKP (A,F),not kw(neg(F),N,N,B),s (N).
29 1{sRes(neg(F),N,B,Bl) : neq(B,Bl)}1 :- occ(A,N,B), haskP(A,F), not kw(F,N,N,B), s (N).
3 :- sRes(L,N,B,Bl), uBr(N,Bl), 1(L), neg(B,Bl).

31 :— 2{sRes(L,N,B,Bl) :br(B) : 1(L)},br(Bl),s(N).

32 uBr(N,Bl) :- sRes(L,N-1,B,Bl), s (N).

33 knows (L,N-1,N,B1l) :- sRes(L,N-1,B,Bl), s(N).

3 :— 2{occ(A,N,B) : hasKP(A,_)}, br(B),s(N).

35 knows(L,T,N,Bl) :- sRes(_,N-1,B,Bl), knows(L,T,N-1,B), N>=T.

3% apply(EP,T,Bl) :- sRes(_,N,B,Bl), apply(EP,T,B), N>=T.

33 P F4. inference mechanisms (Fhﬁer)

3% knows(L,T,N,B) :- kCause(L,T,N,B), uBr(N,B).
40 knows(L,T,N,B) :- kPosPost(L,T,N,B), uBr(N,B).
41 knows(L,T,N,B) :- kNegPost(L,T,N,B), uBr(N,B).

4 » F6. Plan verification (I'yerify)

4 notWG(N,B) :- wGoal(L), uBr(N,B), not knows(L,N,N,B), 1(L).
45 allWGAchieved(N) :— not notWG(N,B), uBr(N,B).

46 :— not allWGAchieved (maxS) .

47 notSG(N,B) :- sGoal(L), uBr(N,B), not knows(L,N,N,B), 1(L).
48 :— notSG(maxS,B), uBr (maxS,B).

49 notGoal (N,B) :— notSG(N,B).

s0 notGoal (N,B) :— notWG(N,B).

F7. Plan generation and optimization (['yi4p)

Sequential Planning:

{occ(A,N,B): a(A)}1 :- uBr(N,B), notGoal(N,B), N < maxS.
Concurrent Planning:

l{occ(A,N,B) : a(A)} :— uBr(N,B), notGoal(N,B), N < maxS.
57 #minimize {occ(_,_,_) @ 1}.

o
@
LIS EC 4

20

Appendix A.2. Randomly Generated Problem Instance for Empirical Evaluation

The following is a randomly generated problem instance as used in the Empirical Evaluation in Section 4.1. This example involves
ten fluents, twelve non-sensing actions and three sensing actions.

Listing 2: Random problem instance

1 5%5%5%%%%%%%% Automatically generated random narrative $5%55%%%%5%5%%
2 % Parameters:

3 % 10 fluents

4 % 12 non-sensing actions

5 % 3 sensing actions

6 $5%5%%5%5%%5%5%% Fluents $5%5%%5%5%%5%%%%

7 £(1).

8 f£(2).

9 £(3).

o £(4).

11 £(5).

12 £(6).

13 £(7).

4 £(8).

15 £(9).

16 £(10).

17 $%%%%%5%%%%% Non-sensing actions 35%%555%%%%%%

18 haskEff (act_0,5).

19 hasCond(act_0,neg(5)) .
20 hasCond(act_0,neg(l)).
21 hasCond (act_0,neg (7))
2 hasEff (act_1,neg(6)).
23 hasCond(act_1,neg(2)).

24 hasCond(act_1,9).

25 hasCond(act_1,neg(5)) .
26 haskEff (act_2,4).

27 hasCond(act_2,9).

28 hasCond(act_2,2).

29 hasCond(act_2,6).

30 haskEff (act_4,9).

31 hasCond(act_4,8) .

32 hasCond(act_4,1).

33 hasCond(act_4,2).

3 haskEff (act_6,3).

35 hasCond(act_6,10) .

36 hasCond(act_6,neg(9)) .
37 hasCond(act_6,6) .

33 haskEff (act_7,10).

39 hasCond(act_7,6).

40 hasCond(act_7,4).

41 hasCond(act_7,8) .

42 hasEff (act_8,neg(9)).
4 hasCond(act_8,neg(10)) .
4 hasCond(act_8,4) .

45 hasCond(act_8,6).

46 hasEff (act_9,neg(9)).
47 hasCond(act_9,1).

4 hasCond(act_9,neg (10)) .
49 hasCond(act_9,neg(3)) .
50 hasEff (act_10,neg(4)).
si hasCond(act_10,6) .

52 hasCond(act_10, neg(
53 hasCond(act_10,neg(
s4 hasEff (act_11,neg(2
55 hasCond(act_11,3).
s6 hasCond(act_11,6).
57 hasCond(act_11,2).
58 hasEff (act_13,neg(8)).
59 hasCond(act_13,2).

60 hasCond(act_13,8).

61 hasCond(act_13,1).

62 hasEff (act_14,neg(2)).
63 hasCond(act_14,06).

64 hasCond(act_14,2).

65 hasCond(act_14,neg (7)) .

10)
5))
)) .

21

ooooooooooooooooooooooo

6 355555555 Narrative $55%55%5%5%5%%%

67 occ(act_0,0).

68 occ(act_1,1).

& occ(act_2,2).

70 sense(l,3).

71 occ(act_4,4).

72 sense(neg(3),5).

73 occ(act_6,6).

74 occ(act_7,7).
(act_8,8).

76 occ(act_9,9).

77 occ(act_10,10).

738 occ(act_11,11).

79 sense(neg(l10),12).

80 occ(act_13,13).

81 occ(act_14,14).

75 occ

The following rules are added to the Logic Program to deal with the abbreviated atoms sense/2 and occ/2. They also avoid the
branching as described in Section 4.1.2.

knows(L, N, N, B) < sense(L, N), uBr(N, B).
occ(sense(L), N) < sense(L, N).
hasKP(sense(L), L) + sense(L,) .

occ(A, N, B) < occ(A, N), uBr(N, B).

(A1)

Appendix B. Soundness of ASP Implementation wrt. H7P X Semantics
Recall the central soundness Theorem 1 from Section 3.6:

Theorem 2 (Soundness for knowledge atoms for single state transitions). For all n,t,b, if there exists a branch b’ such that
hasChild(n,b,b', SE) and knows(l,t,n+1,0') € SE, then there exists an h-state) € V(A,, ,H(n,b, SE)) such that b |= (1,t).
F Ily:
ormaty ¥n,b,b' : (hasChild(n, b, SB)) =
(36 € U(Anp, b(n,b,SE)) : Vi, t: (knows(l,t,n+1,0') € S§ = b |= (I,t)))

As discussed in 3.6, to prove the Theorem, we first eliminate the 3-quantification over § with a case distinction, and then perform
induction over the structure of implications (12) for pairs (I,t) (see Appendix B.1). This requires some auxiliary Lemmata (Ap-
pendix B.2) and relies on other inductive proofs, in particular concerning the application of effect propositions (Appendix B.3),
sensing results (Appendix B.4) and auxiliary predicates (Appendix B.5).

Appendix B.1. Soundness of Knowledge Atoms

Proof of Theorem 1:
In order to prove (11), we first substitute the transition function according to [8, Eq. (6)]: ¥(A, s, h(n,b,S5)) =

U eval({a/,k(n,b, SE) Uk)). It is further easy to see that now(h(n,b,S5)) = n. Hence we obtain (B.1).
kesense(A,h(n,b,SE))

Vn,b,b : (hasChild(n,b, b/, SE)) =

(EI) € U eval({/, k(n,b, SB) Uk)) : Vi, t : (knows(l,t,n+ 1,b') € Sp = b |= (I, t))) (B.1)
kesense(A,h(n,b,SE))
witht <nand &’ = a(n,b, SH) U {{a,n)|a € A}
To prove that (B.1) holds, we perform induction over the structure of (12) for pairs (I, t). To this end, we first determine under which

conditions hasChild(n,b, V', Sg) becomes true and we eliminate the 3 quantification over h-states. Therefore we distinguish two
cases as follows.

22

Case 1: 3’ : (sRes(I',n,b,b") € SE) (With Sensing Result)
We prove that (B.1) holds if sensing results are obtained, i.e. if (B.2) holds.

3" : (sRes(I',n,b,b') € SE) (B.2)

The following formulae are universally quantified over those n, b, b’ for which (B.2) holds. The case distinction allows us to simplify
(B.1) and we make the following substitutions and generalizations for this case.
(B.1)

By case distinction (B.2) and definition of hasChild (8) we have:
3" : (sRes(l',n,b,b') € Sp) = hasChild(n,b,b’, SE)

Hence, in order to prove (B.1) it is sufficient to prove (B.3)

3p € U eval(e, k(n,b, SE) UK) : VI, ¢ : (knows(l,t,n+ 1,b') € SB) = (i |= (1,1)) (B.3)
k€sense(A,h(n,b,Sg))

witht < nand @’ = a(n,b, S5) U {(a,n) |a € An}
(B.3)

We now eliminate the 3-quantification by generalizing (B.3). The case distinction (B.2) states that there exists at least one literal I’ for which
sRes(l’,n,b,b') € SE. In the following we consider an arbitrary literal I° such that:

sRes(l°,n,b,b') € S5 (B.4)
That is, we presume that the following formulae are implicitly universally quantified over [° for which (B.4) holds. Further, by Lemma 7:
(sRes(t*,n.b,') € SB) = (sense(A,b(n, b, 55)) = {{0", m} (T, n)}})

Hence, in order to show that (B.3) holds, it is sufficient to show that (B.5) holds.

Vi, t: ((knows(l,t,n +1,0) € Sg) = (eval(a’, k(n, b, SEYU(I°,n)) = (I, t))) (B.5)
witht < nand @’ = a(n,b, SH) U {{a,n) |a € An}

In the following we prove (B.5) by induction over the structure of implications (12) which generate knows/4 atoms.

Base Steps for Case 1
1. Initial Knowledge: {{l,t) |knows(l,t,n + 1,b") is produced by (T2)}
Implication (12a) generates knowledge for step 0 only, i.e. according to (12a) it must hold that if an atom knows(l,t,n +
1,b') is generated then n + 1 = 0. However, since by Definition 2 we consider n > 0, (T2) can not produce an atom
knows(l,t,n + 1,b). Therefore this case does not apply.'?

13Note that this soundness proof concerns state transitions. Since the initial knowledge to which this base step refers is not the result of a state transition, it does
not have to be considered.

23

2. Inertia of knowledge: {(l,t) |knows(l,t,n + 1,1’) is produced by (F3f)}

To prove (B.5) for those (I, t) for which an atom knows(l,t,n + 1,b’) is produced by logic programming rule (F3f), recall impli-
cation (12d):

knows(l,t,n + 1,b') € Sp < knows(l,t,n,b') € Sp

We substitute knows(l,t,n + 1,b') in (B.5) with the body of (12d) and obtain (B.6).

knows(l,t,n,b') € Sp = eval(<a/,fe(n, b, Sg)>) = (1, t) (B.6)

witht < nand @’ = a(n,b,SH) U {{(a,n) |a € A}

By Lemma 2: Vi, t,n,b,b" : (knows(l, t,n,b') € SE A3 : sRes(l',n,b,b) € Sg)) = b =b’. Since the body of this implication
holds under the case distinction (B.2), we only need to consider cases where b = b'.

knows(l,t,n,b) € Sp = evobl(<o/,n(n,b7 SIDD)>) = (1, t) (B.7)

witht < nand @’ = a(n,b,SH) U {(a,n) |a € Ans}
By [8, Lemma 4]: (I, t) € k(n, b, S5) = eval({c’, k(n,b,S5))) E (I,t)
knows(l,t,n,b) € SH = {I,t) € k(n,b, S’g) with t < n. (B.8)

By (10): k(n,b,S5) = {{I,t) |knows(l,t,n,b) € SH }

We have shown for Case 1 (B.2) that the soundness Lemma (11) holds for those (I, ¢) for which knows(l,t,n + 1,b) is produced by
inertia of knowledge (F3f).

3. Sensing {(l,t) |knows(l,t,n + 1,b) is produced by (F5k)}

To prove (B.5) for those (I,) for which an atom knows(l, t, n+1, b") is produced by logic programming rule (F5k), we recall implication
(12h):

knows(l,t,n +1,b') € S« (sRes(l,n,b,b") € SE At = n)
We substitute knows(l,t,n + 1,b') in (B.5) with the body of (12h) and obtain (B.9).
Vit : sRes(l,n,b,b') € SE = eval (<a’,n(n, b, SE) U <l5,t>>) = (1,8 (B.9)
witht < nand o’ = a(n,b, S5) U {{a,n) |a € A}
Recall that by (B.4), I° is an arbitrary literal such that sRes(I*,n,b,b') € SE. By Lemma 8:
(sRes(l,n, b,b') € SE A sRes(l°,n,b,b) € S’,?) = (=10

To this end, we consider | = [° from now.

Vt : sRes(l°,n,b,b) € S5 = eval (<a',n(n,b, SEYU <15,t>>) = (0, 8) (B.10)

witht <nand @’ = a(n,b,SH) U {{(a,n) |a € Anp}
By [8, Lemma 4]: eval({’, k(n, b, SF) U (I°,£))) = (I°,1)

The base step is proven for knowledge about (I, t) generated by rule (F5k) (sensing) where 31 : sRes(l’,n,b,b’) € S5 .

24

. Inheritance {{l,t) |[knows(l,t,n + 1,') is produced by (F5m)}

To prove (B.5) for those (I, t) for which an atom knows(l, t,n+1, ") is produced by logic programming rule (F5m), recall the following
implication (12i):

Enows(l,t,n +1,b') € Sp <« (Ell' :{sRes(l',n,b,b"), knows(l,t,n,b)} C SEAn+1> t)

We substitute knows(l,t,n + 1,b) in (B.5) with the body of (12h) and obtain (B.11).

Vi, t: ((Hl/ : {sRes(l',n,b,b"), knows(l,t,n,b)} C Sp An+1> t) = (eval(a’, k(n, b, SEYU (I°,n)) k= (I,t)))

(B.11)
witht < nand o’ = a(n,b, S5) U {(a,n) |a € Anp}
hWith (10): ¥V (I, t) : knows(l,t,n,b) € S5 = h(n,b,55) = (I,t).
Vit ((az’ - sRes(l',n,b,b) € S5 Ah(n,b,SB) = (1,1)) = (eval(a!, k(n, b, SB) U (I°,m)) |= (I, 1))) (B.12)

witht < nand @’ = a(n,b,SH) U {{(a,n) |a € A, s}
kBy Lemma [8,4]: V (I,t) : (I,t) € k(n,b, SH) = eval(a’, k(n,b, SH)) k= (I,t). Hence, it is sufficient to show that (B.13) holds.
Vit ((az’ - sRes(I',n,b,b) € S5 Ab(n, b, SE) = (1,1)) = ((I,t) € K(n, b, s’;))) (B.13)
witht < nand o’ = a(n,b, S5) U {(a,n) |a € Anp}

kwnhm): h(n,b,55) | (I,t) = (I,t) € k(n,b, ST)

The base step is proven for knowledge generated by rule (F5m) (inheritance).

25

Induction Steps for Case 1
1. Forward inertia: {(l,t) |knows(l,t,n + 1,b) is produced by (F3d)}

To prove that (B.5) holds for those knows(l,t,n + 1,b’) that are produced by (F3d), recall the following implication (12b):
(knows(l,t,n +1,0) e Sg) <= ({knows(l,t —1,n+1,b"),ENotSet(l,t —1,n 4+ 1,b")} C SE At < n)
We substitute knows(l,t,n + 1,b) in (B.5) with the body of (12b) and obtain (B.14).

{knows(l,t —1,n+ 1,b"), kNotSet(l,t — 1,n +1,b')} C SH At <n =

(B.14)
eval(<a',n(n, b,SE)U (ls,n>>) = (1, t)
witht < nand @’ = a(n,b,SH) U {(a,n) |a € Anp}
We can eliminate ¢ < n since this is considered anyways. Further, recall that by the recursive definition of eval [8, Eq. (15)]:
eval(<o/7 k(n,b,SH) U (ls,n)>) = evalOnce(eval(<a/, k(n,b,SH) U <ls,n>>))
({knows(l,t —1,n+1,b"),kNotSet(l,t — 1,n+ 1,b)} C Sg) = (evalOnce(h') = (1, 1)) (B.15)

witht < nand b’ = eval((a’, k(n, b, SH) U (I*,n))) where & = a(n, b, S5) U{(a,n) |a € Anp}

Considering evalOnce(h’) = pd™*? (pd?°* (cause(back(fwd(h’))))) [8, Eq. (14)] and its constituent functions [8, Egs. (9), (10), (11),
(12), (13)], in particular add ..q [8, Eq. (9)], it follows that:

(I, t) € addfwa(h’) = evalOnce(h') = (1,t)

Hence, to show that (B.15) holds, it is sufficient to show that (B.16) holds:

({knows(l, t—1,n+1,0),kNotSet(l,t — 1,n+1,b')} C 55) = ({19) € addgua(8) e
with ¢t < nand b’ = eval((a’, k(n, b, SH) U (I*,n))) where &' = a(n, b, 55) U{(a,n) |a € Anp}
Consider Lemma 1:
VLt ({(RNotSet(L,t = 1,), sRes(l*,t = 1,n,6)} C SE A (knows(l',t = 1,n,¥) € S5 = (I';t = 1) € &)

= inertial(l,t — 1,5")

Due to the induction hypothesis we may assume that (knows(l’,t — 1,n,b') € Sp = (I',t — 1) € k') is true, and hence we can
substitute kNotSet(l,t — 1,n,b') € S with inertial(l,t — 1,H’).

(knows(l,t —1,n+1,b) € S§ Ainertial(l,t — 1, l)/)) = ((I,t) € addswa(h)) (B.17)

witht < nand b’ = eval({a’, k(n, b, SH) U (I°,n))) where &’ = a(n, b, SH) U{(a,n)|a € Anp}

Again, the induction hypothesis allows us to assume that: knows(l,t — 1,n +1,b') € S5 = (I,t — 1) € x(b’).

((I,t — 1) € k(B') Ainertial(l,t — 1,H")) = ({I,t) € addswa(h’)) (B.18)
with ¢t < nand b’ = eval((a’, k(n, b, SH) U (I',n))) where &’ = ax(n, b, S5) U {(a,n)|a € Anp}
Consider the definition of add f.q [8, Eq. (9)]: addswa(b’) = {{L,t) | (I,t — 1) € k(h') Adnertial(l,t — 1,H") At < now(h’)}.
By definition of now [8, Eq. (4)], the definition of A, ; (see Definition 2) and the fact that =3 {a, t) € &’ : ¢t > n (see (10b) it holds
that now(h’) =n+1

We have shown for Case 1 (B.2) that if knowledge is produced by forward inertia rule (F3d) the soundness Lemma (11) holds.

2. Backward inertia: {{l,t) |[knows(l,t,n + 1,b) is produced by (F3e)}
This case is analogous to the case of forward inertia.

26

3. Causation: {(l,t) |knows(l,t,n + 1,b) is produced by (F4c)}

To prove (B.5) for those (I,) for which an atom knows(l, t,n+1,b") is produced by logic programming rule (F4c), recall the following
implication (12e):
knows(l,t,n+ 1,b') € Sp < kCause(l,t,n +1,b') € Sp

To show that (B.5) holds for those (I, t) produced by LP rule (F4c) we prove (B.19).

kCause(l,t,n + 1,b') € SE = eval(<a',n(n,b, SEYU (ls,n>>) = (1, ¢) (B.19)
witht <nand &’ = a(n,b,S5) U {{(a,n) |a € A, s}
Due to the inductive definition of eval [8, Eq. (15)]: eval({a’, k(n, b, S) U (I*,n))) =

evalOnce(eval({a', k(n, b, SH) U (I*,n)))).

kCause(l,t,n +1,b') € S = evalOnce(h') = (I,t) (B.20)
witht < nand b’ = eval((a’, k(n, b, SH) U (I*,n))) where & = a(n, b, S5) U{(a,n) |a € Anp}
Considering evalOnce(h’) = pd™*? (pdP*° (cause(back(fwd(h))))) [8, Eq. (14)] and its constituent functions [8, Egs. (9), (10), (11),
(12), (13)] it follows that (I, t) € addcause(h’) = evalOnce(h’) = (I,t). Hence, to show that (B.20) holds, it is sufficient to prove
(B.21):

kCause(l,t,n +1,b') € S = (I, t) € addequse(h’) (B.21)
with t < nand b’ = eval((a’, k(n, b, SH) U (I*,n))) where &' = a(n, b, S5) U{(a,n) |a € Anp}

Since kCause/4 atoms are only produced by LP rules generated by translation rule (T4a) we have the following biimplication:

kCause(l,t,n+1,b') € Sp < Jep: (e(ep) =1Aclep) ={I5,...,15} Aapply(ep,t — 1,b') € SE An > tA

/ / - (B.22)
{knows(li,t — 1,n+ 1,b),..., knows(l§,t — 1,n +1,b")} C Sp)
Jep : (e(ep) =1 Acep) = {I5,..., I} Aapply(ep,t — 1,b") € SH An > tA
{knows(I§,t — 1,n 4+ 1,¥'),..., knows(lf,t —1,n +1,b")} C Sg) (B.23)
= (I,t) € addcause(h")

witht < nand b’ = eval({a', k(n, b, SH) U (I*,n))) where &’ = a(n,b,S5) U {(a,n)|a € Anp}
By the induction hypothesis:

({knows(Ct—1,n+1Lb),... knows(,t—1,n+1,6)} C S’D’) = ({5, t—=1) ..., (15, t— 1)} C w(h))

Jep : (e(ep) =1 Acep) = {I5,..., I} Aapply(ep,t — 1,b") € St An > tA
{(,t=1),..., (I, t = 1)} C w(H)) (B.24)
= (I,t) € addcause(h')
witht < nand b’ = eval({a’, k(n, b, SH) U (I*,n))) where &’ = a(n, b, S5) U{(a,n) |a € Anp}

By Lemma 5: (apply(ep,t — 1,b') € SH A sRes(1*,n,b,b') € S5 At —1<n) = apply(ep,t — 1,b)
By Lemma 4: apply(ep,t — 1,b) € S5 = (ep,t — 1) € €(h’)

Jep : (e(ep) =1 Aclep) = {Ii,...,li} A{ep,t — 1) € €(h’) An > tA
{(i,t=1),..., (5.t — 1)} C &(H)) (B.25)
= (I,t) € addecause(h)
with ¢t < nand b’ = eval((a’, k(n, b, SH) U (I*,n))) where &’ = a(n, b, 55) U{(a,n) |a € Anp}

To see that (B.25) holds, consider the definition of addcquse [8, Eq. (11)]:
addeause(§’) ={{I,t) |3 {ep,t — 1) € e(h’) : (e(ep) =IAclep) ={5,...., A {{{,t—=1),..., {5, t—1)} C K,(l)/))}

We have shown for Case 2 (B.2) that if knowledge is produced by causation rule (F4c) the soundness Lemma (11) holds.

27

4. Positive postdiction: {(l,t) |knows(l,t,n + 1, b) is produced by (F4d)}
This case is analogous to the case of causation.

5. Negative postdiction: {(l,t) |knows(l,t,n + 1,b) is produced by (F4e)}
This case is analogous to the case of causation.

Case2: —3I': (sRes(l',n,b,b') € SE) (No Sensing Result)
To prove that (B.1) holds if no sensing results are obtained we consider cases where (B.26) holds.

=3" : (sRes(l',n,b,V') € SE)

(B.26)

The proof for this case is very similar to the proof for Case 1. The difference is that no knowledge is produced by sensing and

inheritance, and that hasChild(n, b, b, SE) is always true since b = b/

Appendix B.2. Auxiliary Lemmata Related to Knowledge

Appendix B.2.1. Inertia
The following Lemma is required in the induction step for proving soundness of forward inertia (B.14) in Appendix B.1.

Lemma 1 (Soundness for inertia in induction step).
VLUt n, b 18 :({kNotset(z,t,n, V), sRes(1°,t,n,b')} € SE A (knows(l',t,n,b') € SE = (I, t) € n’))
= inertial(l,t,b’)
witht < nand §' = eval({c, k(n,b,SF) U (I*,n))) where &' = a(n, b, SH) U {(a,n)|a € A}

Proof:
Recall the following three HP X'-LP rules that affect kNotSet/4 atoms:

kNotSet(L,T, N, B) <not kMaySet(L,T, B),uBr(N, B), s(T), literal(L).
kMaySet(L, T, B) <apply(EP, T, B), hasEff (EP, L)

kNotSet(L,T, N, B) <—apply(EP,T, B), hasCond(EP, L"), hasEff (EP, L),
knows(L',T, N, B),complement(L',L'), N > T.

Since (F3a) and (F3c) are the only rules in the LP with kNotSet/4 in their head, it holds that:

ENotSet(l,t,n,b) € Sp < ((kMaySet(l,t,b) ¢ Sp A {uBr(n,b),s(t), literal(1)} C SF)

(B.27)

(F3a)
(F3b)
(F3¢)

(B.28)

Vv (Eiep, 1 (apply(ep,t, b), hasCond (ep, 1), hasEff (ep, 1), knows(I¢,t,n,b) C SH An > t)))

We make a case distinction according to (B.28) and consider both possibilities that can trigger an atom kNotSet(l,t,n,b).

28

1. kNotSet/4 generated by (F3a). In this case (B.29) holds and we prove (B.30)

(kMaySet(1,t,b) & SE A {uBr(n,b), s(t), literal(1)} C SF) (B.29)

VLUt b1 :(sRes(ls,t,n, v') € Sp A (kMaySet(l,t,b) & St A {uBr(n,b), s(t), literal(1)} C SH)A
i (B.30)
(knows(l/,t,n,b/) €St = <l',t> € n')) = inertial(l,t,5")

witht < nand b’ = eval((a’, k(n, b, SH) U (I°,n))) where &’ = a(n, b, S5) U {{a,n) la € Ans}.
Consider rule (F3b). This is the only rule in the LP with kM aySet/3 in the head and therefore it holds that:
kMaySet(l,t,b) € Sp < Jep : ({apply(ep, t,b), hasEff (ep,1)} C S5) (B.31)

With rewrite (B.31) as kMaySet(l,t,b) & S < Vep : (apply(ep,t,b) € Sp = hasEff (ep,1) ¢ S5) and make the following
substitution:

VI, U tn, b 10 :(sRes(ls,t,n,b/) e SEA (Vep : (apply(ep, t,b) € S = hasEff (ep,l) & Sg))/\
i (B.32)
({uBr(n,b), s(t), literal (1)} C Sg) A (knows(l',t,n,b') € Sp = (I',t) e n')) = inertial(l,t, ")

with ¢t < nand b’ = eval((a’, k(n, b, SH) U (I*,n))) where &’ = a(n, b, S5) U {{a,n) la € An s}
Consider the definition of inertial [8, Eq. (8)]: inertial(l,t, ") < V (ep,t) € e(h’) : (e(ep) =1) = (3I° € c(ep) : (I°,t) € K').

This proves that (B.30) holds.

29

2. kNotSet/4 generated by (F3c). In this case (B.33) holds and we prove (B.34)

Jep,1°: (n >t A {apply(ep,t,b), hasCond(ep, 1), hasEff (ep, 1), knows(I¢,t,n,b)} C S¥) (B.33)

VLU 6 b1 (sRes(lS,t,n, b) € SEA
(Elep, 7 ({apply(ep,t,b/), hasEff (ep,1)} C SEAn>tA {hasCond(ep,l'), knows(l',t,n,b")} C Sg))/\

(knows(l', t,n,b'") € S = (I',t) e K/)) = inertial(l,t,5")
(B.34)
witht < nand b’ = eval((c/, k(n,b, SH) U (I°,n))) where &’ = ax(n,b, SF) U {(a,n) [a € Anp}.

Recall LP rule (F2b) which restricts that two effect propositions with the same effect literal may not be applied concurrently:
< apply(EP1, T, B), hasEff (EPy, L), apply(EP>,T, B), hasEff (EP», L), EP, # EP,, br(B), literal(L).

According to the semantics of ASP integrity constraints, the following holds due to (F2b):

Vi, ep : ({apply(ep,t,b/), hasEff (ep,1)} C Sg) =
(Vep/ € S5 (apply(ep/,t, b e Sp = hasEff (ep,1) & Sg))

That is, only one effect proposition with the same effect literal [can be applied per state transition. Consequently, if an effect proposition
with the effect literal [is applied, and the effect proposition has a condition literal [of which the complement is known to hold, then all
effect propositions with the effect literal [that are applied have a condition literal [of which the complement is known. This is captured
with the following equation:

(3ep,1° : ({apply(ep,t,b'), hasEff (ep, 1)} C SE A {hasCond(ep,1°), knows(I¢,t,n,b')} C Sg))
= (Vep: {((apply(ep,t,b'), hasEff (ep,1)} C Sg) = (ﬂlc : {hasCond(ep,1°), knows(l¢,t,n,b")} C Sg)))

Vi, t,n, b0 (sRes(ls,t,n, b) € SEA
(Vep : ((apply(ep,t,b') € SH A hasEff (ep,l) € Sp) = (31° : {hasCond(ep,1°), knows(l¢, t,n,b")} C Sg)))/\

(k'nows(l/,t,n,b/) €St = <l',t> € n')) = inertial(l,t,p")
(B.35)
with ¢t < nand b’ = eval((a’, k(n, b, SH) U (I*,n))) where &’ = a(n, b, S5) U {{a,n) la € An s}

Consider Lemma 4: Vep, t : apply(ep,t,b’) € S5 = (ep,t) € €(’)

By Lemma 9: hasCond(ep, 1) € S§ = I € c(ep), hasEf f(ep,l) € S5 = 1 = e(ep), hasCond(ep, 1) € S = 1° € c(ep),
hasEff(ep,l) € Sp = 1 = e(ep).

It further holds that: (knows(lT, t,n,b') € SH = <F, t> € K'). Hence, to show that (B.35) holds, it is sufficient to show that (B.36)
holds.

Vi t,n, b1 :(sRes(F,t, n,b') € SEA
(Vep g (((ep, t) € e(h)A = 1 = e(ep)) = (ch :1° € clep) A <17,t> € n/)))) (B.36)
= inertial(l,t, ")
witht < nand b’ = eval((a’, k(n, b, SH) U (I°,n))) where &’ = a(n, b, SE) U {{a,n) la € Anp}.

Consider the definition of inertial [8, Eq. (8)]:

inertial(l,t,h") < (V{ep,t) € €(h’) : (e(ep) =1) = (31° € c(ep) : (I°,t) € K))
We have shown that (B.34) holds.

We have proven the Lemma for both cases. [

30

Appendix B.2.2. No Knowledge in New Branches
The following Lemma is required for the proof of Theorem 1, in the base step of the inductive soundness proof.

Lemma 2 (Knowledge does not exist in new branches).
Vi, t,n,b0,b : (knows(l,t,n,b') € SE A (3" : sRes(l',n,b,b') € SF)) = b=V (B.37)

Proof Sketch:
Consider the following integrity constraint (F51) in the domain independent theory of an HPX’-logic program which prevents that
sRes/4 are produced in unused branches.

+ sRes(L,N, B, B"),uBr(N, B"), literal(L),neq(B, B') (F5i)

It follows from the integrity constraint (F5i) that (31" : sRes(l',n,b,b') € S5 Ab#b') = uBr(n,b') € SE.
Hence we can rewrite (B.37) as follows:

Vi, t,n,b,b ¢ (knows(l,t,n,b') € Sf = uBr(n,V') € S) (B.38)
Lemma 3 shows that (B.38) holds. This proves Lemma 2. U

Appendix B.2.3. No Knowledge in Unused Branches
The following Lemma 3 is required to prove Lemma 2.

Lemma 3 (Knowledge does not exist in unused branches).
Vi, t,n,b: (knows(l,t,n,b) € Sp = uBr(n,b) € Sf) (B.39)

Proof:

This To show that (B.39) is true, we go through all nine LP rules that generate a knows/4 atom. These are summarized as
implications in Equation (12). We prove (B.39) by complete induction over the structure of these nine LP rules for [, ¢, n. For the
base steps, we show that for some of the implications (12) it holds that (B.39) is true. For the induction steps we show that if
(B.39) holds for certain triples (I, ¢, n) then it holds for other triples (I’, ', n’) with (I, ¢, n) # (I',t',n’). The induction is complete
because we consider all implications in (12).

Base Steps

1.
uBr(n,b) € SE < (tzO/\nzO/\sz/\leVP)

(B.40a)
where VP is the set of literals for which a value proposition exists.
This is true since by LP fact (F5a) it holds that uBr(0,0) € SE.
2.
uBr(n,b) € SE < (sRes(l,n 1LY € S{,’) (B.40b)
This is follows directly from LP rule (F5;j).
3.
uBr(n,b) € S§ « ({sRes(l’,n —1,V,b), knows(l,t,n — 1,')} C S5 An > t) (B.40c)

This is follows directly from LP rule (F5;j).

31

Induction Steps

1.
uBr(n,b) € S§ « ({k‘nows(l,t —1,n,b), kNotSet(l,t — 1,n,b)} C SH At < n) (B.404)

This is true since by induction hypothesis it holds that knows(l,t — 1,n,b) € S5 = uBr(n,b) € SE.

uBr(n,b) € S « ({k‘nows(l,t +1,n,b), kNotSet(l,t — 1,n,b)} C SE At < n) (B.40e)
This is true since by induction hypothesis it holds that knows(l,t + 1,n,b) € S5 = uBr(n,b) € SE.
3.
uBr(n,b) € S < (kjnows(l,t,n —-1,b) € Sg) (B.40f)
This is true since by induction hypothesis it holds that {knows(l,t,n — 1,b) € S5 = uBr(n — 1,b) € SE. By LP rule
(F5c¢) it holds that uBr(n — 1,b) € S5 = uBr(n,b) € SE.
4.
uBr(n,b) € S§ « (kC’ause(l,t,n,b) € Sg) (B.40g)
By translation rule (T4a) and by considering that LP rules generated by (T4a) are the only LP rules with kCause/4 in the
head it holds that
kCause(l,t,n,b) € Sp < (36}9 : (e(ep) = LA clep) = {I5,..., 15} Aapply(ep,t — 1,b) € SE
An >t A{knows(I{,t — 1,n,b), ..., knows(lj,t — 1,n,b)} C Sg))
Since we can assume by induction hypothesis that for all i € {1,...,k}: knows(l¢,t — 1,n,b) € SE = uBr(n,b) € S§
it must hold that (B.40g) is true.
5.
uBr(n,b) € S « (sz’ause(l,t,n,b) € Sg) (B.40h)
This case is similar to (B.40g)
6.
uBr(n,b) € SE « (kC’ause(Lt,n,b) € Sg) (B.401)
This case is similar to (B.40g)
O

Appendix B.3. Application of Effect Propositions

The following Lemma states that the application of effect propositions is sound. That is, whenever there exists an atom apply(ep, t,)
in the stable model of an HPX-logic program then there exists a pair (ep, t) in the Effect History €(§) of a corresponding h-state.

Lemma 4 (Soundness of application of effect propositions).

Vn, b, b :hasChild(n,b,b', SE) =

(B.41)
(Vb € U(A,p, b(n,b,SE)) : Vep,t: (apply(ep,t,b') € SH At < n) = (ep,t) € e(h))

Proof:

To prove (B.41) we make a case distinction to eliminate the V&' : hasChild(n, b, b, SE)-quantification. Specifically, we distinguish
between (a) -3, b : sRes(l',n,b,b') € SE and (b) I',b : sRes(l',n,b,b') € SE. Case (a) can be proven with simple
substitutions and (b) requires a simple induction proof.

32

In both cases we argue that there are only two rules in the logic program with an apply /3 atom in the head. These are (F2a) and
(F5n). Hence, if a stable model contains apply/3, then the body of one of (F2a), (F5n) must be compatible with the stable model.
This is expressed with (B.42).

Vn, b ep,t : apply(ep,t,b) € SE <
[Ja : ({hasEP(a, ep),occ(a,t,b')}y C S5 An = t) (B.42a)

VEINE ({sRes(l,n, b,b), apply(ep,t,b)} € SE An > t)} (B.42b)

Before making any case distinctions we simplify (B.41) as follows:
(B.41)

Transition function [8, Eq. (6)]:

V(A H(n,b,S5)) = U eval(<a’, k(n,b, SH) U k>)
kEsense(A,h(n,b,Sg))

where &’ = a(n, b, S5) U {(a,t) |a € Anp At = now(h(n,b,SH))}.

It is further easy to see that now(h(n, b, 55)) = n (see [8, Eq. (4)]).

Vn, b, b :hasChild(n,b,b', Sp) =

(vh € U eval({a/,(n,b, SE) Uk)) : Vep, t : (apply(ep,t,b) € SE At <n) = (en,t) € e(p)) B4
stense(A,h(n,b,Sg))
witht < nand @’ = a(n,b, SH) U {{a,n) |a € A.}
By definition of the eval function [8, Eq. (15)], re-evaluation does not affect the action history of an h-state. Formally:
vh € U eval(<o/,n(n,b7 SHyU k>) ca(h) =o'
kEsense(A,h(n,b,Sg))
By the definition of effect histories [8, Eq. (3)] it holds that:
vh € U eval(<a/,/<:(n, b, SH)U k’>) 1 e(h) = e(a’)
kGSEnSE(A,h(n,b,Sg))
Hence we can eliminate the V quantification over h-states § and (B.43) is rewritten as follows:
Vn, b,b" : hasChild(n, b, b’ Sg) = Vep, t: (apply(ep,t,b’) € SEAt< n) = (ep,t) € e(a’) (B.44)
where o’ = a(n, b, S5) U {(a,n) |a € A}
By [8, Eq. 3)]: e(@’) = {{ep, t) |F {(a,t) € a(h’) : ep € EP*}.
Vn, b, b’ : hasChild(n, b, b, Sg) = Vep, t: (apply(ep,t,b’) € SHE AL < n) = (3{a,t) € o’ : ep € EP?) (B.45)

where &’ = a(n, b, S5) U {(a,n) |a € A, }

To show that (B.45) holds we make a case distinction.

Case 1 - No Sensing Results
We consider the cases where (B.46) holds. That is, the following formulae are universally quantified over those n,b for which

33

(B.46) is true.
—-3I',¥ : sRes(l',n,b,t') € SE (B.46)

Recall (B.45):

Vb : hasChild(n,b,b’, Sp) = Vep,t : (apply(ep,t,b') € Sp At <n) = (I{a,t) € a’ : ep € EPY)

By (B.46) and (8):
((=3" : sRes(l',n,b,b) € Sg) A hasChild(n,b,b')) = b =1

That is, the following formulae are universally quantified over those n, b for which —31" : sRes(l’,n,b,b’) and b = b’ holds.

Vep,t : (apply(ep,t,b) € SH At < n) = (3(a,t) €’ : ep € EP?) (B.47)
where &’ = a(n, b, S5) U {(a,n) |a € A, }

There are two rules in an HPX-logic program which have an atom apply(ep, t, b) in the head, namely (F2a) and (F5n). We argue
that apply(ep, t,b) must be an atom in the stable model if the body of one of the rules is compatible with the stable model. This
leads to the following case distinction:

1. Effect propositions triggered by action occurrence (F2a)
Recall (B.47):
Vep,t : (apply(ep,t,b) € Sp At <n)= (I(a,t) € o’ : ep € EP?)

where &’ = a(n, b, SH) U {(a,n) |a € Anp}
Consider (B.42a):
apply(ep,t,b) € SE < 3a: ({hasEP(a,ep),occ(a,t,b)} C SE An = t)
The following formulae are universally quantified over those ep for which 3a : ({hasEP(a, ep), occ(a,t,b)} C S5 An = t) holds.

(3a : {hasEP(a,ep),occ(a,n,b)} C Sp) = (F(a,n) € & : ep € EP?) (B.48)
where @’ = a(n, b, SH) U {(a,n) |a € Anp}

Since &’ = a(n, b, S5) U {(a,n) |a € A,p} it is sufficient to show that (B.49) holds.

(3a : {hasEP(a,ep),occ(a,n,b)} C Sp) = (Ja € A,y : ep € EP®) (B.49)
where o’ = a(n, b, S5) U {(a,n) |la € A}

By Definition 2:
A, = {alocc(a,n,b) € Sp}

By Lemma 9:
Va,ep : (hasEP(a,ep) € Sp < ep € EP%)

We have proven that the application of effect propositions is sound if produced by rule (F2a) (application of EP triggered by action
occurrence).

34

2. Effect propositions triggered by inheritance (F5n)
Recall (B.47):
Vep,t : (apply(ep,t,b) € SH At < n) = (3(a,t) € a’ :ep € EP?)

where o’ = a(n, b, S5) U {(a,n) |a € A}

Consider (B.42b):
apply(ep,t,b) € Sp < 3l : ({sRes(l,n,b,b), apply(ep,t,b)} € Sp An >=t)

3l : sRes(l,n,b,b) € SE contradicts the case distinction (B.46), hence no atom apply(ep, t, b) is produced.

Case 2 - With Sensing Results: We consider the cases where (B.50) holds. That is, the following formulae are universally quanti-
fied over those n, b for which (B.50) is true.
3" : sRes(l',n,b,V') € SE (B.50)

The case distinction allows us to simplify (B.45). Consider the following substitutions:
Recall (B.45):
Vn,b,b' : hasChild(n,b,b',SH) =

Vep,t : (apply(ep,t,b') € S At <n) = (3(a,t) € & : ep € EPY)

By (B.50) and (8):
Yo' : (31" : sRes(I',n,b,b")) = hasChild(n,b,b’) = true

The following formulae are universally quantified over those n, b for which (B.50) is true.

Vep,t,b' : (apply(ep,t,b’) € SEAt< n) = (3{a,t) €a’ : ep € EP?) (B.51)
where &’ = a(n, b, S5) U {(a,n) |a € A, }

To prove that (B.51) holds, we consider both rules of the HPX-LP with an atom apply(ep, t,b’) in the head: (F2a) and (F5n). We
argue that apply(ep, t, b") must be an atom in the stable model if the body of one of the rules is compatible with the stable model.
To this end, we perform induction over the structure of (B.42) for b'. For the base step show that (B.51) holds for those b’ for
which an atom apply(ep,t,b’) produced by rule (F2a). For the induction step we consider rule (F5n) which involves another
apply(ep,t,b") atom: we argue that if (B.51) holds for a ' and if an atom apply(ep, t,b"") is produced by rule (F5n), then (B.51)
also holds for the ”. The induction is complete because rules (F2a) and (F5n) are the only rules with apply(ep, t,b’) atoms in the
head.

1. Base Step: effect propositions triggered by action occurrence (F2a)
Consider (B.42a):
apply(ep,t,b') € S5 < 3a : {hasEP(a,ep),occ(a,t,b')}y C SE At =n (B.52)

Due to Lemma 6 it holds that =30/, 1 : (v # bA sRes(l',n,b,b') € SE Aoce(a,n,b') € SE). Hence, we may only consider

cases where b’ = b. In this case, the proof is analogous to the soundness proof for effect propositions triggered by action
occurrence in Case 1.

35

2. Induction Step: effect propositions triggered by inheritance (F5n)
Recall (B.47):
Vep,t : (apply(ep,t,b) € Sp At <n) = (I(a,t) € a’ : ep € EPY)

where &’ = a(n, b, S5) U {(a,n) |a € A, s}
Consider (B.42a):
apply(ep,t,b) € Sp <3l : ({sRes(l,n,b,b"), apply(ep,t,b)} € SEAn >= t)
The following formulae are universally quantified for those ep for which 31 : ({sRes(l,n,b,b"), apply(ep,t,b)} € S5 An > t) holds.

(3l : sRes(l,n,b,b') € Sp A apply(ep,t,b) € Sp An > t)
= (3{a,t) €' :ep € EP?)
where @’ = a(n, b, SH) U {(a,n) |a € Anp}

(B.53)

Since we perform induction we assume that soundness holds for apply(ep, t, b). That is,
(apply(ep,t,b) € Sp At <n) = (T{a,t) € & : ep € EPY) (B.54)
We have shown that (B.51) holds for apply/3 produced by the inheritance rule (F5n).
We have shown that the Lemma holds by proving that (B.41) holds for both cases, ~3,1' : sRes(l',n,b,t') € SE and 3/, 1’ :
sRes(l',n,b,b') € SE. O
Lemma 5 (Branching of application of effect propositions).
Vi, n,b, b, ep,t
/ / P ’ / / P (B'SS)
({sRes(l',n,b,0"), apply(ep,t,b)} € Sp At < n) < ({sRes(I',n,b, V'), apply(ep,t,b")} € Sp At <n)

Proof:
We distinguish two cases: The = direction directly emerges from the inheritance rule (F5n). For the < direction we consider two
cases:

1. Consider that an atom apply(ep, t, ") is produced by rule (F2a). In this case it must hold that {occ(a, n, '), hasEP(a,ep)} C
SE An = t and by Definition 2 it holds that occ(a,n,t’) € SE = uBr(n,b') € SE. However, considering that
sRes(I',n,b,b') € SE the integrity constraint (F5i) assures that uBr(n,b') ¢ SE and leads to a contradiction. Hence
apply(ep, t,b") can not be produced by (F2a) if sRes(I’,n,b,b')SE.

2. Consider that an atom apply(ep, t, ') is produced by rule (F5n). Then clearly it must hold that apply(ep, t,b) € SE.
Items 1. and 2. prove the Lemma g
Lemma 6 (Actions do not occur in new branches).
Vn,b,a: =301 (V) # b A sRes(l',n,b,b) € S5 A occ(a,n,b') € SE) (B.56)

Proof: Suppose the contrary is true, i.e. 30,1’ : (b' # b A sRes(l',n,b,b') € SE A occ(a,n,t’) € SE). Then by Definition 2 it
must hold that uBr(n, V') € Sg . This again contradicts the integrity constraint (F51), hence (B.56) must hold. (Il

Appendix B.4. Sensing Results

We prove soundness for sensing results: if at a node n, b an atom sRes(l, n, b, b') is produced, then the sense-function [8, Eq. (7)]
returns a pair (I, ¢). This is captured with Lemma 7.

Lemma 7 (Soundness for sensing results).

Vi, n,b,b : sRes(l,n,b,b') € Sh = sense(Anp, b(n,b, S5)) n),(l,n) (B.57)
Vn, b, b : (=3 : sRes(l,n,b,b') € Sp) = (sense(Anp, H(n, b, SD)) {0}) (B.58)

36

Proof:
Consider all rules in an HP X-logic program with an sRes/4 atom in the head. These are:

sRes(F,N, B, B) <—occ(A, N, B), hasKP (A, F),not kw(F, N, N, B) (F5f)
1{sRes(neg(F),N, B, B’) : neq(B, B')}1 <—occ(A, N, B), hasKP(A, F), not kw(F, N, N, B) (F5g)
We need the following auxiliary result. Consider rules (F5d),(F5e) which produce kw/4 atoms. According to the stable model
semantics, since these rules are the only rules with kw/4 in their heads the following must hold:
Vf,t,n,b:

- - (B.59)

kw(f,t,n,b) & St = {knows(f,t,n,b), knows(neg(f),t,n,b)} NS =0
To prove that (B.57) holds, we show that for both rules (F5f), (F5g) that if their body is compatible with the stable model .S. P then
3(l,n) € sense(Ayp, H(n,b,SE)) must hold. That is, to show that (B.57) holds we consider (B.59) and show that both (B.60)
and (B.61) hold:

Vf,n,b:3Ja :({occ(a,n, b), hasKP(a, f)} C SD A {knows(f,n,n,b), knows(neg(f),n,n,b)} N S5 = (Z)) (B.60)
= (sense(Ans, (b, SF)) = {(1.n), (I,n)}) '
Vf,n,b: 3a:({occ(a,n,b), hasKP(a, f)} € S A {knows(f,n,n,b), knows(neg(f),n,n,b)} N SH = 0) B.61)
= (sense(Anp,b(n,b,55)) = {{l.n), (L.n)}) ‘
1. Positive sensing result (B.60)
(B.60)
With Definition 2 and Lemma 9:
a: ({occ(a7 n,b), hasKP(a, f)} C Sg)
= (FJa€ Anp: KP" = f)
Vf,n,b:3a € Any :(KP* = f A {knows(f,n,n,b), knows(neg(f),n,n,b)} NSy = 0) B.62)
= (sense(Anp, h(n,b, SD) ={{(fin), (—=f,n)}) .
By (10): k(n, b, SB) = {(I,t) |knows(l,t,n,b) € S}
{knows(f,n,n,b), knows(neg(f),n,n,b)} N SE=p= {{(=f,n),{f,n)} N Kk(n,b, S’;) =0
Vf,n,b:3a € Any KP* = fA{(=f,n),(f,n)} Nk(n,b,SH) = 0))

= (sense(Any, b(n,b,57)) = {{f,n), (=f,n)})

Consider [8, Eq. (7)], and according to now [8, Eq. (4)], (8) and (10): now(h(n, b, S5)) = n. Further, k(h(n, b, S5)) = k(n,b, S5).

{{<f7 >}7 {<ﬁf7 n)}} ifJa € An,b (KPP = A <f7 n> ¢ H(na b, S’g) A <ﬁf7 TL> ¢ H(nv b, S’IS)

{0} otherwise

sense(Anp, h(n,b, Sp)) = {

It follows that (B.63) holds.

2. Negative sensing result (B.61)
This is analogous to the case of the positive sensing result.

The proof for (B.58) is analogous to the proof for (B.57). (]

37

Lemma 8 (Only one sensing result per branch).
vn,1,b,0',1" : ((sRes(l,n,b,b') € Sp A sRes(l',n,b,b') € S5) =1 =1') (B.64)

Proof Sketch:
This directly follows from the integrity constraint (F5h). (]

Appendix B.5. Auxiliary Predicates
Lemma 9 (Soundness for auxiliary predicates). Given the prerequisites described in Definition 2 the following holds:
1. hasEP(a,ep) € SE < ep e EP®
2. hasEff (ep,1) € SE < e(ep) =1
3. hasCond(ep,l) € SE <1 € c(ep)
4. hasKP(a,f) € SE « KP* = f

Proof:

This follows directly from observing that the auxiliary predicates hasEP /2, hasEff /2, hasCond /2, hasKP /2 only appear in a
stable model SE if they are produced by translation rules (T3) — (T5). There are no other rules which have one of the auxiliary
predicates in their head. (]

38

	Introduction
	Preliminaries
	Answer Set Programming
	Action Language Syntax and Semantics

	Answer Set Programming Formalization of HPX
	Main Predicates and Notation
	Constitution of an HPX-logic program
	Translation Rules: (D -3muT1 – T7 world)
	Fluent Declarations (D -3muT1fluents)
	Initial Knowledge (VP -3muT2init)
	Actions (EP,KP,EXC -3muT3–T6act)
	Goals (G -3muT7goal)

	hpx – Foundational Theory (F1) – (F7)
	Plan Extraction from stable models
	Relation between the ASP Implementation and the Operational HPX-Semantics

	Empirical Evaluation, and a Case Study with a Robotic Wheelchair in a Smart Home
	Trading Completeness for Efficiency: Empirical Evaluation
	Problem instances
	Evaluation
	Results

	Case Study: Abnormality Detection in a Smart Home

	Conclusion and Outlook
	Source Code
	Foundational Theory of the Offline ASP Formalization of HPX
	Randomly Generated Problem Instance for Empirical Evaluation

	Soundness of ASP Implementation wrt. HPX Semantics
	Soundness of Knowledge Atoms
	Auxiliary Lemmata Related to Knowledge
	Inertia
	No Knowledge in New Branches
	No Knowledge in Unused Branches

	Application of Effect Propositions
	Sensing Results
	Auxiliary Predicates

