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Abstract

We propose an approximation of the possible worlds semantics (PWS) of knowledge with support for postdiction – a fundamental
inference pattern for diagnostic reasoning and explanation tasks in a wide range of real-world applications such as cognitive
robotics, visual perception for cognitive vision, ambient intelligence and smart environments. We present the formal framework,
an operational semantics, and an analysis of soundness and completeness results therefrom.
The advantage of our approach is that only a linear number of state-variables are required to represent an agent’s knowledge state.
This is achieved by modeling knowledge as the history of a single approximate state, instead of using an exponential number of
possible worlds like in Kripke semantics. That is, we add a temporal dimension to the knowledge representation which facilitates
efficient postdiction. Since we consider knowledge histories, we call our theory h-approximation (HPX ).
Due to the linear number of state variables,HPX features a comparably low computational complexity. Specifically, we show that
HPX can solve the projection problem in polynomial (tractable) time. It can solve planning problems in NP, while e.g. for the
action language Ak[48] this is ΣP

2 -complete. In addition to the temporal dimension of knowledge, our theory supports concurrent
acting and sensing, and is in this sense more expressive than existing approximations.

Keywords: commonsense reasoning, action and change, epistemic reasoning

1. Introduction

Commonsense reasoning about action & change is a vibrant research area concerned with developing formal methods for rep-
resenting and reasoning about high-level knowledge [37, 7, 10, 20]. One particular line of research in reasoning about action &
change is that of epistemic action theories, e.g. [36, 48, 47], which are concerned with reasoning about the knowledge of an agent.
An agent can form knowledge directly, by executing sensing actions, or by deductive and abductive inference mechanisms.
Epistemic action theories are usually represented by a possible-world model of knowledge, following the work by Moore [36].
A problem with such approaches is that an exponential number of possible worlds are required to model an agent’s knowledge
states. Hence, possible worlds-approaches are highly intractable. Approximations with a lower complexity exist (e.g. [48]), but
these usually have no support for an important form of inference, called postdiction – a kind of logical reasoning that is concerned
with inferring knowledge about the past based on present observations (see Examples 1,2,3).
Our research addresses the development of approximate epistemic action theories that (i) natively support postdiction, (ii) have a
lower complexity bound compared to approaches based on possible worlds, (iii) are provably sound, and (iv) support concurrency.
This paper presents the h-approximation (HPX ), a history-based approximation of PWS that satisfies criteria (i-iv). This paper
mainly elaborates on the theory of the proposed approach. An implementation of the theory in terms of answer set programming
[2], along with an empirical evaluation and a case study, are presented in a follow-up paper [14].

Postdictive Reasoning
We regard postdiction as a form of reasoning accounting for causal relations between temporally ordered states. Postdiction is
abductive reasoning, in the sense that it can be used to explain an observation. However, technically, it can be implemented in a
deductive manner, as shown throughout this paper. Within an epistemic action theory, postdictive reasoning can be applied to verify
action success and to infer new knowledge about the past. For illustration, consider the following examples:
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Example 1. The litmus test
To find out whether a liquid is acidic or alkaline, one can hold a litmus paper into the liquid. If the paper is red, one can postdict
that the liquid is acidic, and if the paper is blue, one knows that the liquid is alkaline.

This example, due to Moore [36], illustrates how postdiction is used to determine a world property (the acidic-ness of the liquid)
by executing a non-sensing action (holding a paper in the liquid) and observing another world property (the color of the paper) that
is a causal consequence of the non-sensing action.

Example 2. Grabbing an egg
Consider a household-robot with an object grabber and a vision system to identify objects. When grabbing a fragile object like
an egg, the robot applies a certain force with the grabber and the egg may break. It can postdict that too much force was applied,
if it observes that the egg is broken.

The example illustrates how postdiction is the underlying logical inference mechanism for learning action parameters by observing
the (non-) success of the action.

Example 3. Robot passing through a door
A robot has the task to open a door and to drive through it. It can execute an open-door command, but it does not have haptic
sensors to directly verify the state of the door after executing the command. Hence, considering that the door is sometimes
jammed, the robot can never really know whether the door is indeed open or closed after executing the command. However, it
does have a location sensor to determine on which side of the door it currently is. If the robot ends up on the other side of the
door after driving, then it can postdict that the door was open, and hence that it was not jammed (assuming that the robot knows
that the door was initially closed).

This example illustrates an indirect form of postdiction, where a world property (the jammed-ness of the door) is determined by
executing a sequence of two non-sensing actions that are causally linked: if the door is not jammed then it will open, and if it is
open then the robot will end up on the other side. The effect of the drive action (robot behind door) depends on the effect of the
open-door action (open-state of door) which in turn depends on the world property that the robot will postdict (jammed-ness of the
door).
In general, postdiction problems are compounded in situations where the high-level belief / reasoning module is fully independent
of the low-level control framework.1

Contribution:HPX – An approximation of PWS with a Temporal Knowledge Dimension and Postdiction
We describe the semantics of our approximate theory by means of a transition function, where action occurrences are modeled as a
transition from one knowledge state to another. Our semantics involves the following combination of key features which distinguish
it from the state of the art: (i) the native capability of postdiction, (ii) an approximate state representation of linear size, (iii) the
capability to represent and to reason about knowledge about the past, and (iv) concurrency of sensing and non-sensing actions.
Note that all of these features are not new by themselves – it is this particular combination of features that makes our approach
useful in practice, as depicted throughout this paper.

Naive and Elaboration Tolerant Postdiction
Postdiction is inherent in every diagnosis problem where the (previously unknown) reason for the success or non-success of an
action is information of interest. It is therefore desireable to have action formalisms that support his kind of inference in general
manner. Section 2 contains a survey that reports on different ways of implementing postdiction and identifies approximate action
theories that support postdiction only in an ad-hoc manner. These action theories are often very useful due to their efficiency in
terms of computational complexity, but they do not support postdiction natively and are therefore not elaboration tolerant [33].
According to McCarthy [33], “[a] formalism is elaboration tolerant to the extent that it is convenient to modify a set of facts ex-
pressed in the formalism to take into account new phenomena”. With respect to McCarthy’s general characterization of elaboration
tolerance, we clarify what elaboration tolerance means in the context of our work: we call an epistemic action theory elaboration
tolerant, if postdiction and other knowledge-level effects of actions emerge directly from the foundational theory and do not have
to be implemented manually by the domain designer. As an example consider a simple navigation problem where robots can move
through doors, pick up things, etc. A potential postdictive inference in this setting is, that a door must be open if a robot successfully
passed it. For an elaboration tolerant theory it should not be necessary to explicitly model rules for this postdictive inference. This is
depicted in Example 4, which illustrates problems that arise when postdiction is implemented manually, by means of static causal
laws (SCL) in the action language Ac

k [55].

1As we demonstrate in a real world case-study in [14, Sec. 4.2], this is indeed the case in typical large-scale robotics projects where multiple hybrid and mutually
interacting components are involved.
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Example 4. Elaboration tolerance and static causal laws
A robot can execute an action drived to reach a room through a door d. A fluent in denotes that it is in the room, and a fluent
opend denotes that the door d is open. The robot has a location sensor to determine whether it is in the room; its activation
is modeled with an action sense in. An epistemic action theory should be able to postdict that opend holds if in holds after
drived and sense in are executed.Ac

k semantics does not yield this postdictive inference natively, but one can use the following
workaround:
An auxiliary fluent did drived represents that drive has been executed and a manually encoded static causal law (SCL) postdicts
that if the robot is in the destination room after driving the door must be open: “If did drived and in then opend”.
The knowledge-level effect of learning that the door must be open after passing it has to be modeled manually with the SCL, and
therefore the workaround is not elaboration tolerant. This is not only circumstantial for the domain designer, but also dangerous,
as the approach can easily generate wrong beliefs. For example, consider a scene with two doors that lead to the same room, and
static causal laws for both doors, i.e. d ∈ {1, 2}. Consider further, that the robot executes first drive1, but the door is closed.
Then it executes drive2 and senses its location (sense in). If door 2 is open and in is known to hold, then the SCL for door 1
will fire and generate the wrong belief that door 1 is open.

Linear Number of State Variables – Tractable Projection Problem
Epistemic action theories that are based on a possible-world semantics (PWS) have the problem that an exponential number of
possible worlds are required to model an agent’s knowledge state. Given that |F | is the number of potentially unknown fluents of a
domain specification, 2|F | · |F | variables are required to model the knowledge state of the agent.
Our approach requires only a linear number of state variables; given that t is the number of state transitions (or steps), HPX
requires |F | · (t+ 1) state variables to model an agent’s knowledge state. Section 4 shows that for this reason solving the projection
problem remains polynomial, while postdiction is possible.

Temporal Knowledge Dimension
Native and elaboration tolerant support for postdiction is achieved by incorporating a temporal knowledge dimension. For instance,
if an agent moves trough a door (say at t = 2) and later (say at t = 4) comes to know that it is behind the door, then it can postdict
that the door must have been open at t = 2. After applying this postdictive inference it can further refine its knowledge and use the
inertia assumption to infer that the door is still open at t = 3 and t = 4.

Concurrent Sensing and Action
The temporal dimension of knowledge also allows one to elegantly model concurrent execution of sensing and physical actions.
This is non-trivial, especially if an action senses the value of a fluent while concurrently changing it, as depicted with the following
extended version of the Yale shooting problem [19].

Example 5. The Yale shooting problem with concurrent acting and sensing
Consider an agent shooting at a turkey. It can sense whether the gun was loaded by hearing the explosion’s noise, and assuming
that there was an explosion, the agent can conclude that the turkey must be dead after the shooting. Note that this version of the
problem requires us to model the shooting action with concurrent sensing (gun loaded if explosion heard) and physical effects
(turkey dead, gun unloaded).

Modeling this scenario correctly, such that a conclusion about the turkey’s death follows, is not possible with existing approaches,
except [31] (for details see Example 9).

2. Epistemic Action Theory: A Survey

Our survey distinguishes four types of epistemic action theories (TH-1 — TH-4), as summarized in Table 1.

TH-1 Theories based on a PWS . This is the traditional approach, following the work by [21, 26, 36]. Model-theoretic PWS-
based approaches (e.g. [47]) typically employ Kripke’s accessibility relation to model knowledge. Operational approaches
use multisets of fluents (e.g. [48], [30], [12]).

TH-2 Theories based on disjunctive state-representations (e.g. [40]). Their expressiveness and inference capabilities are compara-
ble to PWS approaches, but corresponding implementations can be more efficient in practice [53].

TH-3 Approximations of PWS (e.g. [48]). These are less expressive but have better computational complexity properties than
PWS . Such theories are equivalent to PWS-based approaches, at the cost that strong restrictions are imposed [43, 6].
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Features of epistemic action theories # State
variables

Elaboration
tolerant
postdiction

Temporal
knowledge
dimension

Concurrent
acting and
sensing

Imple-
men-
tation

Soundness /
completeness
results

TH-1 – PWS-based approaches
Extension to A Lobo et al. [30] EXP ! - - - !

Ak(PWS) Son & Baral [48] EXP ! - - - !

Epistemic SC Scherl & Levesque [47] EXP ! - - - !

AOL Lakemeyer & Levesque [27] ∞ ! - - - -
Epistemic FC Thielscher [50] EXP ! - - (!) !

CFF Hoffmann & Brafman [22] EXP ! - - ! -
EFEC Ma et al. [31], Miller et al. [35] EXP ! ! ! ! -
Approach by Vlaeminck et al. [56] EXP ! ! - - -
Approach by Fagin et al. [16] EXP ! ! - - !

TH-2 – Disjunctive state approaches
DECKT Patkos & Plexousakis [40] EXP ! - (!) ! !

PrAO To [54] EXP ! - - ! -
TH-3 – Approximations of PWS

h-approximation (HPX ) LIN ! ! ! ! !

Epistemic SC Demolombe & del Pilar Pozos Parra [11] LIN - - - - -
Epistemic SC Liu & Levesque [29] LIN - - - - -
Ac

k(0-approximation) Tu et al. [55] LIN - - (!) ! !

TH-4 – Approaches requiring explicit knowledge-level effect specification
PKS Petrick & Bacchus [42] LIN - - (!) ! -
FLUX Thielscher [52] LIN - - (!) ! (!)
INDIGOLOG de Giacomo & Levesque [18] LIN - - (!) ! -

Table 1: Survey of epistemic action theories

TH-4 Theories that rely on explicit formulation of knowledge-level effects (e.g. [42]). Theories of this category can be understood
as approximations too, but it is required to carefully specify knowledge-level effects of actions in an epistemically accurate
manner. For instance, one has to explicitly model, that if the condition of an action is unknown, then its effect is unknown.

Table 1 identifies existing approaches and compares their computational properties, expressiveness and inference capabilities. We
are particularly interested in the following features:

1. Number of state variables (exponential or linear) and computational complexity.
The number of state variables has a tremendous influence on the computational complexity of action formalisms. For in-
stance, consider the action language Ak [48]: the plan existence problem is ΣP

2 -complete for an exponential number of state
variables and NP-complete for the 0-approximation where the number of state variables is linear wrt. the domain size [3].2

For the epistemic Situation Calculus [47] we have an exponential number of state variables, which gives an exponential
number of possible worlds even if we restrict the variables to be boolean.AOL [27] has an infinite number of state variables,
because it allows for nested knowledge.

2. Elaboration tolerant postdiction.
Our work is motivated by the need for postdiction to solve diagnosis and explanation problems in epistemic action theory.
Example 4 illustrates the need for elaboration toleranance [33] within a formalism for postdiction. That is, we are interested
in whether knowledge-level effects of actions emerge from the underlying foundational theory of a formalism, or if they have
to be implemented manually by the domain designer.

3. Temporal knowledge dimension.
Reasoning about past (or future) facts opens up a new range of problems. For instance, in narrative interpretation or forensic
reasoning. Witnesses may give evidence about facts in the past; or knowledge about the occurrence of an event may be
acquired at a later time point.

4. Concurrent acting and sensing.
Real-world domains often demand to model actions which change the world and concurrently sense a property of the world.

2Under the assumption that plans are polynomial in size and the number of sensing actions is limited.
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For instance, pulling the trigger of a gun causes the shooter to know whether the gun was loaded and at the same time has the
physical effect of the impact of the bullet (see Example 9). Another more practical example is a sensor that consumes energy
while the sensing happens.

5. Implementation.
A major goal of our research is to use HPX with real robots and other applications that require an implementation. An im-
plementation also serves as a proof-of concept of the formalism. We present an answer set programming [2] implementation
ofHPX in [14].

6. Soundness / completeness results.
Many formalism are defined in ‘isolation’ wrt. other approaches, i.e. the relation to other formalisms is not investigated
formally by performing soundness or completeness proofs. Without such proofs, the relation between different action theories
is unclear and conditions under which a formalism is equally expressive as another formalism can not be identified.

We admit that this list of features emphasises the capabilities of the HPX formalism, but argue that in particular postdiction and
a low computational complexity are, combined, of general importance in real world problems. Of course, the invesitgated other
formalisms have other special strengths, which we discuss in the following.

TH-1. PWS-based Epistemic Action Theories

The most popular approach to represent knowledge in an action theoretic context is a non-approximated PWS , where knowledge
is represented by an exponential number of possible worlds. The approach was first applied by Moore [36], and stems from the
work concerning Epistemic Modal Logic by Carnap [8], Hintikka [21], Kripke [26] and others. Here, knowledge states are modeled
either with an accessibility relation (e.g. [47]) between possible worlds, or with multisets of fluents in mathematical logic (e.g. [48]).
These approaches support postdictive reasoning in an elaboration tolerant manner, but they have the disadvantage that modeling an
agent’s knowledge state requires an exponential number of possible worlds and hence an exponential number of state variables.
As an example for such an approach consider Lobo et al. [30], who used both mathematical logic and epistemic logic programming
to formulate a PWS based epistemic extension to the action language A. Another PWS based epistemic semantics for A is
defined for the action language Ak by Son & Baral [48]. Ak is sound and complete wrt. the approach by Scherl & Levesque
[47] and the approach by [30]. However, we could not locate a full implementation, and Ak does not feature concurrent actions in
general.
Scherl & Levesque [47] provide an epistemic extension and a solution to the frame problem for the Situation Calculus [32] using
an accessibility relation. A temporal knowledge dimension does not exist and concurrency is not supported. To the best of our
knowledge there exists no implementation of their version of the epistemic SC. Son & Baral [48] showed that under certain
assumptions the approach by Scherl & Levesque [47] is sound and complete wrt. Ak.
Lakemeyer & Levesque [27] combine knowledge and action in the logicAOL in the context of the situation calculus and the logic
of only knowing [28]. Their approach considers introspection, i.e. knowledge about knowledge, and for this reason the number of
state variables is in infinite. A temporal dimension of knowledge and concurrency is not considered. To the best of our knowledge,
the theory has not been implemented and the relation to other epistemic action calculi has not been investigated formally.
The Fluent Calculus (FC) [23, 49] was extended to consider knowledge in [50]. It uses an accessibility relation similar to [47] and
hence requires an exponential number of state variables. The epistemic FC does not consider a temporal knowledge dimension.
There exists an extension which covers concurrency [51], but this extension does not consider knowledge and sensing. Kahra-
manogullari & Thielscher [24] provide a formal investigation concerning the relation between FC and the epistemic extension of
A by Lobo et al. [30]. There exists a Prolog implementation of the epistemic Fluent Calculus called FLUX [52], but its semantics
differs from the original epistemic FC in that it does not employ an accessibility relation. For this reason we report about FLUX
separately.
In addition to logic-based action-theoretic approaches there exist several PDDL-based [34] planners that deal with incomplete
knowledge. These planners achieve high performance via practical optimizations such as BDDs [4] or heuristics-driven search
algorithms like those used for the ContingentFF (CFF) planner [22]. However, their underlying semantics is typically based on a
PWS . For instance, the semantics of CFF is based on sequential STRIPS [17] and adds the PWS-approach to model sensing and
knowledge. Despite its efficiency in relatively small domains, the exponential number of state variables causes an extreme phase
transition if the domain size exceeds a certain threshold.3 Postdiction is possible and elaboration tolerant, but concurrent acting and
sensing is not supported in CFF. A formal investigation of the relation between CFF and other formalisms is also not provided.
Concerning the temporal dimension of knowledge two approaches stand out, namely Ma et al. [31] and Vlaeminck et al. [56]. Ma
et al. [31] propose an epistemic extension to the Event Calculus [25] which considers possible world histories instead of possible

3For example, the RING problem [22] where an agent must move through n rooms and close the windows in these rooms demands 1.5s for 4 rooms, 480s for 5
rooms and produces a timeout > 3600s for 6 rooms with CFF on a 2 Ghz i5 machine with 6GB RAM.
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worlds. It has elaboration tolerant support for postdiction and knowledge about past and future can be represented. Concurrent
acting and sensing is possible with EFEC, and an implementation exists as answer set programming.4

Another PWS-based first-order logical framework to model a temporal dimension of knowledge is provided by Vlaeminck et al.
[56]. The framework employs first-order-reasoning such that it allows for elaboration tolerant postdiction and the projection prob-
lem is solvable in polynomial time. However, the authors do not provide a practical implementation and evaluation of their method.
The key feature of their approach is that the first-order reasoning is approximated, such that the plan-existence problem is in NP
despite the exponential number of state variables of the actual action formalism.5 The framework has not been implemented and
the relation to other action calculi has not been formally investigated.
Fagin et al. [16] present a very comprehensive earlier approach to formalise the reasoning about knowledge in action. The au-
thors give an explicit account on time, even in the multi agent case. However, the work is rather theoretical and therefore hardly
comparable with our work which is geared towards efficiency and the concrete application in robotics.

TH-2. Theories with a Disjunctive Knowledge State Representation

There are alternatives to a PWS-based knowledge representations which use a disjunctive knowledge representation. One example
is DECKT [40] – an epistemic extension to the Event Calculus. DECKT relies on so-called Hidden Causal Dependencies which
are modeled by reified first-order predicates. For instanceKnows(¬f ∨ f, T ) represents that at a time T an agent has knowledge
about the causal dependency “if f1 holds then f2 must also hold”. In general, disjunctive approaches require only a linear number
of states to model an agent’s knowledge but the number of variables per state is up to exponential. An implementation of DECKT
is presented in [41] but the implementation is not capable of action planning. DECKT is sound and complete wrt. BDECKT [40],
a PWS-based version of the Event Calculus. Concurrent acting and sensing is in principle possible but fails if an action senses the
value of a fluent which is modified at the same time, as demonstrated in our Yale Shooting Scenario in Example 9.
Another approach by To [54] implements a general planning framework called PrAO which is based on so-called minimalDNS
representations. The approach is reported to have a very good performance compared to PWS-based planners, but concurrency is
not supported and a formal comparison with other epistemic action calculi is not presented.

TH-3. Approximate Epistemic Action Theories

Approximate theories are usually derived from a PWS based formalization. Approximations can have simpler state representa-
tions and hence a lower computational complexity, but postdiction is not naively supported with existing approaches. Demolombe
& del Pilar Pozos Parra [11] provide an approximate epistemic extension to the Situation Calculus (SC) which is based on special
knowledge fluents. Their approach involves simpler frame axioms compared to the PWS based approach by Scherl & Levesque
[47], such that an implementation would be tractable. However, postdiction is not possible with this approach. A temporal knowl-
edge dimension and concurrency is also not supported. Liu & Levesque [29] present another epistemic extension of the Situation
calculus. Their approach to approximate PWS is based on so-called local action effects. The intuition behind local action effects
is that all conditions of an action must be known before execution. This implies that postdiction – in the sense of inferring the con-
ditions of an action by observing its effect – is not required. The approach by [29] is claimed to coincide with the 0-approximation
of Son & Baral [48] if formulae are restricted to be propositional. However, we were unable to locate a formal proof.
The 0-approximation by Son & Baral [48] does not consider an exponential number of possible worlds, but instead one single
approximate world which is the intersection of all possible worlds. This requires only a linear number of state variables to model
the knowledge state of an agent, instead of an exponential number with PWS based approaches. The plan-existence problem for
Ak is NP-complete [3], and postdiction is not supported.6 Tu et al. [55] introduce Ac

k and add Static Causal Laws (SCLs) to the
0-approximated Ak. In Example 4 we demonstrate that SCL allow only for a non-elaboration tolerant form of Postdiction.

TH-4. Epistemic Action Theories with Explicit Knowledge-Level Effects

Approaches like the PKS planner [42], the FLUX system [52] or INDIGOLOG [18] require one to model the knowledge-level
effects of an agent explicitly in the action specification. These are able to deal with incomplete knowledge, but knowledge-level
effects of actions have to be defined manually for each action. This leads to elaboration intolerance and allows a domain designer to
specify epistemically inaccurate domain specifications. For example, a domain designer has to implement manually that the effect
literal of an action becomes unknown if the condition literal is unknown. We argue that such knowledge-level effects should be
handled by the theory, not by the domain designer.
PKS is based on the Epistemic Situation Calculus by [47], but a formal soundness proof wrt. this or other formalisms is not pre-
sented. There exists an implementation of PKS which is particularly efficient if many functional fluents are used. FLUX [52] can be

4An implementation can be found at http://www.ucl.ac.uk/infostudies/efec/ (accessed on 17th July 2014)
5The authors only provide a complexity result that the projection problem is polynomial, but it follows directly from the definition of non-deterministic Turing

Machines that plan-existence is in NP.
6Son & Baral [48] present other approximations (e.g. 1-approximation or ω-approximation) in the same paper as well, but these also do not support postdiction.
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understood as an implementation of the (epistemic) Fluent Calculus in Prolog. However, there is a fundamental difference between
the epistemological reasoning machineries of both calculi: Unlike the original epistemic Fluent Calculus defined in [50], FLUX
does not employ an accessibility relation but instead an explicit knowledge-predicate. As a result, knowledge-level effects of ac-
tions (such as postdiction) have to be specified manually which makes a formal investigation of the relation between this limited
form of epistemic reasoning and the epistemic FC difficult; soundness and completeness results are not provided. The manual spec-
ification of knowledge-level effects make FLUX also elaboration-intolerant. INDIGOLOG [18] is a high-level cognitive robotics
control framework that supports sensing and incomplete knowledge. It is based on an operational semantics and implemented in
Prolog. In the implementation, sensing is modeled in a simplified manner and an accessibility relation is not employed. Though
work concerning epistemic accuracy of INDOGOLOG has been conducted in [46], we were unable to find actual soundness or
completeness results for INDIGOLOG’s semantics wrt. other epistemic action theories such as [47].
Concurrent acting and sensing is possible with PKS, FLUX and INDIGOLOG but it fails for actions which sense and concurrently
change the same fluent’s value, as described in our extended version of the Yale Shooting Problem (Example 9).

3. The h-Approximation – An Approximate Semantics for Postdictive Reasoning
This section describes the operational semantics of the h-approximation. In Section 3.1 we describe the syntax of the action
language and show how this maps to a set-theoretic formalization ofHPX . The formalization is based on so-called h-states which
represent the knowledge state of an agent. An h-state consists of a set of pairs of fluent literals and time points that represent the
knowledge history of an agent, as well as a set of pairs of actions and time points to represent the action history.
Section 3.2 describes how state transitions are modeled. We define a transition function which maps an h-state and a set of actions
to a set of h-states. State transitions involve a re-evaluation step which iteratively refines the knowledge history of an agent by
considering sensing results and the occurrence of actions. Based on the basic transition function for single actions, we formalize
concurrent conditional plans (CCP) and define an extended transition function which maps a CCP and an h-state to a set of h-states.
We illustrate the theory with a running minimal example of a robot trying to enter a room by driving through a door.

3.1. Domain Specification and Syntax

Throughout this paper we use the following notational conventions: We use the symbol a to denote actions, ep for effect proposition,
n and t for time (or step), b for branch, and f for fluent. l denotes fluent literals of the form f or ¬f . l denotes the complement
of l and |l| is used to “positify” a literal, i.e. |¬f | = f and |f | = f . With these conventions we describe the syntax of language
to specify domains denoted D. Domain specifications are quadruples 〈VP, EP,KP, EXC〉 that are defined by action language
elements (1a) – (1d).

initially(linit1 , . . . , linitninit
) (1a)

causes
(
a, le, lc1 . . . l

c
nc

)
(1b)

determines(a, fs) (1c)

executable
(
a, lex1 . . . lexnex

)
(1d)

(1a). A set of value propositions (VPs) denotes initial knowledge. We define VP as the set of expressions (1a). We sometimes
write initially

(
linit1 , . . . , linitninit

)
to denote a set of ninit VPs for the respective literals linit1 , . . . , linitninit

.

(1b). A set of effect propositions (EPs) represent conditional action effects . We call lc1 . . . l
c
nc

condition literals and le an effect
literal. For an effect proposition ep of the form (1b) we write c(ep) to denote the set of condition literals and e(ep) for the
effect literal. We use EP to denote the set of effect propositions of a domain D, and we sometimes write EPa to denote the
subset of EPs for one fixed a.

(1c). Knowledge propositions (KPs) of the form (1c) represent that an action a senses a fluent fs. We define KP as the set of
knowledge propositions of D, and we sometimes write KPa to denote the knowledge proposition for one fixed a.

(1d). Executability conditions (EXCs) of the form (1d) denote what an agent must know in order to execute an action. We denote
EXC as the set of executability conditions of D, and we sometimes write EXCa to denote the set of executability conditions
for one fixed a. Formally, each action has one executabiltiy condition, where executable(a, ∅) is implicit for any action a
without an explicit executability condition.

Note that a set of domain fluents (denoted FD) is implicitly defined by the domain definition: Whenever a fluent literal f or ¬f is
involved in one of the language elements (1a) – (1d), then f is contained in the set of domain-fluents FD. Respectively, LD is the
set of domain literals.
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3.2. Operational Semantics of the h-Approximation

The HPX semantics is based on so-called history-states (h-states) and a transition function (6). The transition function maps ac-
tions and h-states to h-states. To realize postdiction and other epistemic effects, a re-evaluation function eval is applied after each
state transition. eval retrospectively considers temporal knowledge and incrementally refines knowledge with inference mecha-
nisms for postdiction, causation and inertia. In addition to the transition function (6) for single actions we define an extended
transition function (16) that maps a concurrent conditional plan and a state to a set of states.7

3.2.1. Knowledge States with a Temporal Dimension
Formally, h-states h are pairs 〈α,κ〉, where α denotes the action history and κ the knowledge history of h. Formally,

• an action history α consists of pairs 〈a, t〉 where a is an action and t is a time step, and

• a knowledge history κ is a set of pairs 〈l, t〉 where l is a literal and t is a time-step.

To handle concurrency in a more convenient manner we introduce effect histories as an auxiliary instrument derived from action
histories.

• An effect history ε is a set of pairs 〈ep, t〉 where ep is an effect proposition and t is a time-step.
The formal definition of effect histories is provided in Definition 1.

Definition 1 (Effect history ε). Let α = {〈a1, t1〉 , . . . , 〈an, tn〉} be an action history and let EPa denote the set of effect propo-
sitions of a domain D of the form (1b) for a fixed a. Then the effect history ε(α) of the action history α is given by (2).

ε(α) = {〈ep, t〉 |∃ 〈a, t〉 ∈ α : ep ∈ EPa} (2)

For convenience we also write (3).
ε(h) = ε(α(h)) (3)

In general, we write α(h) , κ(h) and ε(h) to denote the action history, knowledge history and effect history of an h-state h. To
simplify notation, we sometimes transfer sub- and superscripts from h to ε, κ and α (if clear from the context). For instance we
write εn to denote ε(hn).

3.2.2. Initial Knowledge
A particular h-state of a domain description is the initial state, described by Definition 2.

Definition 2 (Initial h-state h0). A state is called the initial state (denoted by h0 = 〈α0,κ0〉) of a domainD if and only ifα0 = ∅,
and for every fluent literal l in a value proposition VP: 〈l, 0〉 ∈ κ0.

Example 6 depicts how an action is applied to transform the initial state h0 into a successor state h1.

Example 6. Action and knowledge history
Consider domain D1 which specifies the problem of opening a door into a room if it is unknown whether the door is jammed.

D1 =

{
initially (¬in room,¬is open)

causes (open door, is open,¬jammed)

}
(D1)

The value proposition results in the initial knowledge history κ0 = {〈¬in room, 0〉 , 〈¬is open, 0〉}, and we have the action
history α0 = ∅. Applying action open door on h0 causes a transition to h1 as follows:

h0

κ0 = { 〈¬in room, 0〉 ,
〈¬is open, 0〉}

α0 = {}
h1

κ1 = { 〈¬in room, 0〉 , 〈¬in room, 1〉 ,
〈¬is open, 0〉}

α1 = { 〈open door, 0〉}

open door

Note that κ1 does not contain a pair 〈in open, 1〉 or 〈¬is open, 1〉: If it is unknown whether there is an abnormality in opening
the door, then it is also unknown whether the door is actually open after executing this action.

7Our definition of concurrency is restricted in the sense that all actions are assumed to have the same duration. Therefore we define concurrency only wrt. single
actions and not wrt. to other concurrent conditional (sub-)plans.
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3.2.3. Knowledge about the Present (and the Past)
To identify the present world state within a knowledge history we define an auxiliary function now (4), which it returns the number
of state transitions that have occurred so far.

now(h) =

{
0 if α(h) = ∅
t+ 1 otherwise, where t is maximal in all tuples 〈a, t〉 ∈ α(h)

(4)

To query the knowledge of an agent that is in an epistemic state h, we use an entailment operator |= to define (i) whether at the
present step a literal l is known to hold at the present step (5a), or (ii) whether at the present step a pair 〈l, t〉 is known to hold (5b),
i.e. whether l is known to hold at a possibly earlier step t ≤ now(h).

h |= l⇔ 〈l, now(h)〉 ∈ κ(h) (5a)
h |= 〈l, t〉 ⇔ 〈l, t〉 ∈ κ(h) (5b)

3.2.4. Executability of Actions
Executability conditions (1d) are qualifications on the agent’s knowledge at the time it executes an action. They reflect what an
agent must know in order to execute an action. Executability conditions are formalized in Definition 3.

Definition 3 (Executability of actions). Consider an action a with an executability condition executable
(
a, lex1 . . . lexnex

)
, i.e. ,

EXCa = {lex1 , . . . , lexnex
}. We say that a is executable in an h-state h if ∀lex ∈ EXCa : h |= 〈lex, now(h)〉.

We say that an h-state h = 〈α,κ〉 is execute-consistent, if all past and present actions are executable, i.e., ∀ 〈a, t〉 ∈ α,∀lex ∈
EXCa : κ |= 〈l, t〉.

Intuitively, an action is executable if all literals in the executability condition are known to hold at the step the action is executed,
i.e. at now(h).

3.2.5. Sensing, Branching, Transition Function
The transition function Ψ (6) adds a set of actions to the action history α and then evaluates the knowledge-level effects of these
actions. Ψ considers sensing and maps a set of actionsA and a state to a set of states.

Ψ(A,h) =
⋃

k∈sense(Aex,h)

eval(〈α′,κ(h) ∪ k〉)

where •Aex is the subset of actions ofA which are executable in h

•α′ = α(h) ∪ {〈a, t〉 |a ∈ Aex ∧ t = now(h)}

(6)

The transition function involves two other functions, namely sense and eval:
• eval (15) is a re-evaluation function which we describe in Section 3.2.7. In brief, eval refines the knowledge-history of an

h-state by determining the knowledge-level effects of non-sensing actions using certain inference mechanisms.

• sense (7) adds sensing results to the knowledge history. It is formally defined as follows:

sense(A,h) =


{{〈fs, ts〉}, {〈¬fs, ts〉}} if A contains exactly one sensing action a with a knowledge proposition

determines(a, fs) and {〈fs, ts〉 , 〈¬fs, ts〉} ∩ κ(h) = ∅

{∅} otherwise

where ts = now(h)
(7)Intuitively, sense describes that knowledge is added to the original h-state if none of the possible outcomes of the sensing (either fs

or ¬fs) is already known. Note that the time at which the sensing result holds is the time at which the sensing happens, i.e. the time
before the successor-state time: ts = now(h). Example 9 in Appendix A.1 demonstrates that this is essential to model concurrent
acting and sensing. We restrict sensing to only one fluent at a time, because sensing more that one fluent at once would lead to a
state space explosion caused by an exponential branching factor.
The re-evaluation function eval consists of the following five inference mechanisms which constitute the re-evaluation process.
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3.2.6. Inference Mechanisms (IM1.–IM.5)
The inference mechanisms IM.1 – IM.5 are crucial for the postictive reasoning and temporal knowledge dimension. For a thorough
illustration we refer the reader to Examples 10 – 12 in Appendix A.2.

I IM.1 – IM.2: Inertia

To define how knowledge persists, we first formalize inertia (8). Intuitively, a literal l is inertial at a step t if no effect proposition
can negate l.

inertial(l, t,h) =

{
true if ∀ 〈ep, t〉 ∈ ε(h) :

(
e(ep) = l

)
⇒
(
∃lc ∈ c(ep) :

〈
lc, t
〉
∈ κ(h)

)
false otherwise

(8)

A literal l is inertial at a step t if (i) there is no effect proposition (EP) such that 〈ep, t〉 ∈ ε(h) and ep has a complementary effect
literal l, or (ii) there is an EP such that 〈ep, t〉 ∈ ε(h) and ep has a complementary effect literal l, but ep has at least one condition
literal lc which is known not to hold at t.
Having defined when a fluent is inertial, we can define forward and backward inertia of knowledge. To this end, we state two
functions fwd (9) and back (10) that map an h-state to an h-state. Forward inertia is defined by (9).

fwd(h) = 〈α(h),κ(h) ∪ addfwd(h)〉
where
addfwd(h) = {〈l, t〉 | 〈l, t− 1〉 ∈ κ(h) ∧ inertial(l, t− 1,h) ∧ t ≤ now(h)}

(9)

Backward inertia is defined by (10).

back(h) = 〈α(h),κ(h) ∪ addback(h)〉
where

addback(h) = {〈l, t〉 | 〈l, t+ 1〉 ∈ κ(h) ∧ inertial(l, t,h) ∧ t ≥ 0}
(10)

For example, consider that at a step t = 2 the open-state of a door is unknown. An action sense open with a knowledge propo-
sition determines (sense open, is open) would produce two sensing results, 〈is open, 2〉 and 〈¬is open, 2〉. Let us consider the
positive case, where 〈is open, 2〉 is produced. Given that the fluent is open is inertial at step 2, forward inertia (9) will produce a
pair 〈is open, 3〉, and, given that ¬is open is inertial at step 1, backward inertia (10) will produce 〈¬is open, 1〉. For a detailed

illustration of (9) and (10) consider the steps from h̃
1+

2 to h̃
2+

2 and from h̃
2+

2 to h̃
3+

2 in Example 10, Appendix A.2.

I IM.3: Causation

We define a function cause that produces knowledge about the effects of executable actions if the conditions are known. Intuitively,
if an effect proposition ep is applied at t− 1, and all condition literals of ep are known to hold at t− 1, then the effect literal le of
ep holds at step t.

cause(h) = 〈α(h),κ(h) ∪ addcause(h)〉
where
addcause(h) = {〈le, t〉 |∃ 〈ep, t− 1〉 ∈ ε(h) : {〈lc1, t− 1〉 , . . . , 〈lcn, t− 1〉} ⊆ κ(h)}
with c(ep) = {lc1, . . . , lck} and e(ep) = le.

(11)

I IM.4 – IM.5: Positive and negative postdiction

The function pdpos (12) defines positive postdiction. This inference shows that the conditions of an effect proposition hold if (i) the
effect literal is known to hold after a set of concurrent actions are executed and (ii) known not to hold before action execution and
(iii) no other effect proposition could have triggered the effect literal.

pdpos(h) = 〈α(h),κ(h) ∪ addpdpos(h)〉
where
addpdpos(h) = {〈lc, t〉 |∃ 〈ep, t〉 ∈ ε(h) : lc ∈ c(ep) ∧ 〈le, t+ 1〉 ∈ κ(h)∧〈

le, t
〉
∈ κ(h) ∧ (∀ 〈ep′, t〉 ∈ ε(h) : (ep′ = ep ∨ e(ep′) 6= le))}

with le = e(ep)

(12)

The function pdneg (13) describes negative postdiction. This is the inference that knowledge about one yet unknown condition
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literal of an effect proposition is gained if the effect is known not hold after an action a and all other condition literals are known
to hold before the action. Example 11 in Appendix A.2 illustrates how knowledge is gained through postdiction.

pdneg(h) = 〈α(h),κ(h) ∪ addpdneg (h)〉
where

addpdneg = {
〈
lcu, t

〉
|∃ 〈ep, t〉 ∈ ε(h) : lcu ∈ c(ep) ∧

〈
le, t+ 1

〉
∈ κ(h) ∧ (∀lc ∈ c(ep) \ lcu : 〈lc, t〉 ∈ κ(h))}

with le = e(ep)

(13)

As an example consider an action open door, with the single effect proposition causes (open door, is open,¬jammed). Assume
that this action is executed in the initial state, i.e. at step t = 0, and no other action is executed concurrently. Assume further, that
nothing is known about the initial state. A sensing action sense open is exectued after open door, at step t = 1, and produces two
branches: one with 〈is open, 1〉 and one with 〈¬is open, 1〉. This triggers positive postdiction in the first branch, i.e. , addpdpos

produces 〈¬jammed, 0〉. Negative postdiction is triggered in the second branch, i.e. , addpdneg produces 〈jammed, 0〉. For a more

detailed illustration consider the step from h̃
3+

2 to h̃
4+

2 in Example 10 in Appendix A.2.

3.2.7. Re-evaluation of Knowledge-level Effects
To apply all five inference mechanisms together we define an evalOnce function that successively applies each of the inference
mechanisms.

evalOnce(h) = pdneg(pdpos(cause(back(fwd(h))))) (14)

A problem is that inference mechanisms may trigger each other in any order, so it is often not sufficient to apply IM.1 – IM.5 only
once. To this end, re-evaluation is defined recursively (15) until convergence is reached.

eval(h) =

{
h if evalOnce(h) = h

eval(evalOnce(h)) otherwise
(15)

For an illustration of this fixed point approach, consider Example 12 in Appendix A.2. eval converges in linear time, and is therefore
reasonable, because given the restrictions in Sections 3.1 and 3.2.10, there exists only a linear number of elements in the knowledge
history, and no element is ever removed from the knowledge history. For details see Lemma 3 in Appendix B.1.

3.2.8. Concurrent Conditional Plans
So far we considered only single state transition steps. In order to model more complex cases that imply several transitions we define
concurrent conditional plans (CCP). A CCP is a combination of sequences of concurrent actions and if-then-else constructs, as
formalized in Definition 4.8

Definition 4 (Concurrent conditional plan).
• An empty sequence of actions (denoted by []) is a CCP

• If a1, . . . , an are actions, then [a1||. . .||an] is a CCP.

• If p1 and p2 are concurrent conditional plans, then [p1;p2] is a CCP.

• If p1 and p2 are concurrent conditional plans and l is a fluent literal, then [if l then p1 else p2] is a CCP.9

3.2.9. Extended Transition Function
We define an extended transition function Ψ̂ that maps a plan and a state to a set of states.

Ψ̂(p,h) =



{h} if p =[]

Ψ({a1 . . . an},h) if p =[a1||. . .||an]⋃
h′∈Ψ̂(p1,h)

Ψ̂(p2,h
′) if p =[p1;p2]

Ψ̂(p1,h) if p =if l then p1 else p2 and h |= l

Ψ̂(p2,h) if p =if l then p1 else p2 and h 6|= l

(16)

The extended transition function models branching as a reaction on respective sensing results. For illustration consider Example 7.

8Recall that we use a restricted form of concurrency where all actions have the same duration. Hence we consider only concurrent actions and not concurrent
(sub-)plans.

9For notational convenience we allow to skip the else-part, i.e. [if l then p1] is equivalent to [if l then p1 else []]
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Example 7. Extended transition function
Consider domain D4 and the CCP p = [open door; sense open; [if is open then [drive]]].

D4 =


initially (¬in room)

causes (drive, in room, {is open})
causes (open door, is open, {¬jammed})

determines (sense open, is open)

 (D4)

Given that the door is not jammed, the plan will lead to a state where the robot is in the destination room. This is achieved by
the application of the extended transition function as follows: First open door is executed, generating a single successor state.
Then sense open generates two h-states: one where the resulting h-state satisfies the condition is open of the drive action, and
another one where the condition is not satisfied. In the h-state where the condition is satisfied, the action drive is applied after
sensing. In the other h-state, action execution ends after sensing. Hence, the extended transition function for p and D4 evaluates
as follows:

Ψ̂(p1,h0) ={Ψ(drive,Ψ(sense open,Ψ(open door,h0))),

Ψ(sense open,Ψ(open door,h0))}
(17)

3.2.10. Consistency Issues
Our semantics is only reasonable under the following three consistency restrictions: (i) we forbid inconsistent initial states, (ii) we
forbid that actions with contradictive effects are applied concurrently (e.g. opening and closing a door at the same time), and we
forbid states that are not execute consistent, i.e. , if executability conditions of actions are always met (see Definition 3). To this
end we describe consistency of h-states and consistency of CCP wrt. domains in the following Definitions 5 and 6.

Definition 5. Consistent h-states
An h-state h = 〈α,κ〉 is consistent if ∀ 〈l, t〉 ∈ κ :

〈
l, t
〉
6∈ κ, and if it is execute-consistent in the sense of Definifion 3.

Definition 6. Consistency of plans wrt. domains
A plan p is consistent wrt. a domain D if all h-states in the generated transition tree are consistent.

In the remainder of this paper we only consider consistent plans and domains.

4. Soundness and Complexity Results for Projection and Planning

HPX is designed to solve temporal projection and planning problems. In the following we define both types of problems, pro-
vide soundness results with a PWS-based temporal epistemic action theory, and identify the computational complexity under
reasonable restrictions.

4.1. The Projection Problem

The projection problem is that of predicting what an agent knows after executing a plan in a given domain. The problem is solved
by applying the extended transition function and investigating all resulting leaf states of the transition tree.
Investigating the leafs can be done in two ways. One way is to ask what an agent possibly knows after executing a plan, and the
other way is to ask what an agent necessarily knows. If a fact is known in all leaf states, the agent necessarily knows the fact; if a
fact is known in at least one leaf state the agent possibly knows the fact. The latter depends on the outcome of sensing actions in
the plan. This corresponds to the distinction between weak and strong planning (see e.g. [9]), and is captured in Definition 7. Note
that the terminology to refer to strong and weak planning is diverse in literature. For example, Sardina et al. [45] call strong plans
adequate.
Definition 7. The projection problem
Given a domain D and a plan p,

• an agent necessarily knows that a pair 〈l, t〉 holds after executing p if (18) holds, i.e. if 〈l, t〉 is known in all leaf states of the
transition tree.

∀h ∈ Ψ̂(p,h0) : h |= 〈l, t〉 (18)

• an agent possibly knows that a pair 〈l, t〉 holds after executing p if (19) holds, i.e. if 〈l, t〉 is known in at least one leaf state
of the transition tree.

∃h ∈ Ψ̂(p,h0) : h |= 〈l, t〉 (19)
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In order to determine the computational complexity we first make some considerations pertaining to plans. Plans are solutions to
real-world problems and therefore only feasible if their size is at most polynomial wrt. the problem specification. Towards this, the
size of p is restricted to be polynomial wrt. the size of D. In addition we restrict plans to have only a limited number of sensing
actions.10 The following Theorem 1 states, that, under such reasonable restrictions, solving the projection problem is polynomial.

Theorem 1 (Complexity of theHPX projection problem). Given a domain D and a plan p of polynomial size, with a limited
number of sensing actions; deciding whether (18) (resp. (19)) holds is polynomial.

Proof:
• To solve the problem we call the extended transition function Ψ̂(p,h0) and iterate over all resulting leaf nodes to see whether

a pair 〈l, t〉 is in the knowledge history of the leaf nodes. Since p is of polynomial size and since the number of sensing
actions is limited, the number of nodes in the transition tree is of polynomial size wrt. D.

• The transition function (6) is applied for each node (except for the leaf nodes), and is therefore called polynomially often.

• Calling the transition function (6) involves calling the re-evaluation function eval (15), which in turn calls evalOnce(h)
(14) until the h-state converged. Convergence is reached in polynomial time, because the size of the knowledge history κ(h)
is linear wrt. the depth of the plan p and we restrict p to be of polynomial size (for details see Lemma 1, Appendix B).

• A single re-evaluation step evalOnce(h) employs inference mechanisms IM.1–IM.5. These are all performed in polynomial
time wrt. the size of the knowledge history (see Lemma 2, Appendix B for details). �

4.2. The Planning Problem

While for the projection problem a plan p is given and one asks for pairs 〈l, t〉, the planning problem is that of deciding whether
there exists a plan p, such that, for a given domain D and a given pair 〈l, t〉, (18) (resp. (19)) holds. If (18) holds, 〈l, t〉 is known to
hold in all leafs of the transition tree and p is a strong plan. If (19) holds, 〈l, t〉 is known to hold in at least one leaf of the transition
tree and p is a weak plan. We refer the reader to [9] on more information on weak and strong planning, and to [39, 38] on certain
problems concerning so-called deadends that occurr in strong planning problems.
The following theorem states that solving the planning problem is in NP, under the restriction that p is of polynomial size and
the number of sensing actions is limited. Note that this is corresponds with the complexity of classical planning under equivalent
restrictions, with complete knowledge and without sensing actions [1]. For a more general discussion on planning under partial
observability, we refer to [44].

Theorem 2 (Complexity of theHPX planning problem). Given a domain D and a pair 〈l, t〉 with l ∈ LD and finite t ≥ 0; for
p of polynomial size and with a limited number of sensing actions, deciding whether (20) (resp. 21) holds is in NP.

∃p :
(
∀h ∈ Ψ̂(p,h0) : h |= 〈l, t〉

)
(20)

∃p :
(
∃h ∈ Ψ̂(p,h0) : h |= 〈l, t〉

)
(21)

Proof:
The theorem is a direct consequence of Theorem 1. Since p is restricted to be of polynomial size, and since deciding whether (18)
(resp. (19)) holds is polynomial, one can solve (20) (resp. (21)) in NP time.

4.3. Soundness wrt. PWS
In order to describe how HPX relates to traditional epistemic action theories which are based on a possible-worlds-semantics
(PWS) we investigate soundness wrt. the action language Ak by Son & Baral [48]. With respect to this, we have to consider that
the Ak semantics is less expressive than HPX in that it does not support temporal knowledge. For example, propositions like
“After sensing the location, the agent knows that the door was open before the driving.” can not be made with Ak. We address this
issue in Sections 4.3.1 and 4.3.2, by defining an extended Temporal Query Semantics (called ATQS

k ) that generalizes Ak, and that
allows for such propositions. Having defined the extended semantics ATQS

k , we can state the central soundness Theorem 3.

10Limiting the number of sensing actions means that the number of sensing actions is constant, and independent of the size of the plan. This is reasonable because
we account for scenarios where actions are deterministic, so that the world does not have to be monitored continuously. Similar arguments can be found in [3].
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4.3.1. An Action Language Based on Possible Worlds: The Ak Semantics
Let us first summarize the original Ak Semantics by Son & Baral [48]. It is defined via a transition function that maps actions and
so-called c-states to c-states. A c-state δ is a tuple 〈u,Σ〉, where u is called a state and Σ is called a k-state. Informally, u represents
a possible world and Σ represents the possible agent’s belief wrt. u. A k-state Σ is a set of possible states s. A state (denoted u
or s) is a set of fluents. If for a state s and a fluent f it holds that f ∈ s then the value of f in s is true and otherwise false. We
require that c-states are grounded, i.e. that u ∈ Σ for all c-states δ = 〈u,Σ〉. Intuitively this means that the possible world u is
among the worlds Σ the agent believes it could be in. For convenience we overload the |=-notation for a state s as follows:

(s |= f)⇔ (f ∈ s)
(s |= ¬f)⇔ (f 6∈ s)

(s |= L ⇔ (∀l ∈ L : s |= l)

(22)

where L is a set of domain literals. Similarly we define for a k-state Σ:

(Σ |= l)⇔ (∀s ∈ Σ : s |= l) (23)

Equation (23) reflects that a literal l is known to hold if it is true in all possible worlds s in Σ. Given a domain description D, one
is interested in a set M of valid models of D. A valid model m = 〈δ0,Φ〉 is a pair of a valid initial c-state δ0 and a transition
function Ψ. An initial c-state is called valid if it does not contradict the initial knowledge defined in D (see [48] for details).
The transition function emerges from the effect propositions and knowledge propositions in D. It maps an action a and a c-state to
a c-state. It is defined with a case distinction as follows:

1. a is a non-sensing action: in this case the transition function is defined as:

Φ(a, 〈u,Σ〉) =
〈
Res(a, u), {Res(a, s′)|s′ ∈ Σ}

〉
where (24)

Res(a, s) = s ∪ E+
a (s) \ E−a (s) where (25)

E+
a (s) = {f | ∃ep ∈ EPa : e(ep) = f ∧ s |= c(ep)}

E−a (s) = {¬f | ∃ep ∈ EPa : e(ep) = f ∧ s |= c(ep)}

Res (25) is a result function that reflects causation: if all conditions of an effect proposition ep hold (denoted s |= c(ep)),
then the effect e(ep) holds in the result.

2. a is a sensing action: in this case a has a knowledge proposition KPa = fs and the transition function is defined as:

Φ(a, 〈u,Σ〉) = 〈u, {s|(s ∈ Σ) ∧ (fs ∈ s⇔ fs ∈ u)}〉 (26)

Intuitively, (26) rules out these possible worlds in Σ which do not coincide with the actual world u.
An illustration of the Ak semantics is provided in Appendix C, Example 13.

4.3.2. Temporal Query Semantics – ATQS
k

Our approach to make Ak capable of temporal reasoning is based on a re-evaluation step with the following intuition:
let Σ0 = {s0

0, . . . , s
|Σ0|
0 } be the set of all possible initial states of a complete initial k-state wrt. a valid initial c-state

δ0 of an Ak domain D. Whenever sensing happens, the transition function will remove some states from the k-state,
i.e. Φ(an,Φ(an−1, · · ·Φ(a1, 〈u0,Σ0〉))) = 〈un,Σn〉. To reason about the past, we refine the set of possible initial states and
re-apply the result function to the refined set of initial states again. The refined set of initial states is the set of initial states which
“survived” the transition of a sequence of actions.
For example, consider a sequence of n actions and say we are interested in the world state after the t-th action. Then we consider a
re-evaluated initial k-state, denoted Σn

0 , which consists of states s0 ∈ Σ0 such that for sn = Res(an, · · ·Res(a1, s0) it holds that
sn ∈ Σn. In other words, we consider these initial states s0 of which the child states sn “survived” the sensing actions.
Once we identify the re-evaluated initial k-state we apply the result function on each s ∈ Σn

0 up to the t-th action for this state. The
resulting re-evaluated k-state is denoted Σt

n. If a fluent holds in all states stn ∈ Σt
n, then after the n-th action, it is known that a

fluent holds after the t-th action. This is formalized by Definitions 8 and 9. An illustration of the semantics is provided in Example
14, Appendix C.

Definition 8 (Re-evaluated initial k-state). Let α = [a1; . . . ; an] be a sequence of actions and δ0 = 〈u0,Σ0〉 be a valid initial
c-state such that 〈un,Σn〉 = Φ(an,Φ(an−1, · · ·Φ(a1, δ0))). We define a re-evaluated initial k-state, denoted Σ0

n, as the set of
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initial belief states in Σ0 which are valid after applying α.11

Σ0
n = {s0|s0 ∈ Σ0 ∧Res(an, Res(an−1, · · ·Res(a1, s0))) ∈ Σn} (27)

Re-evaluated c-states are defined in Definition 9: given a sequence of actions α, re-evaluated c-states are obtained by applying the
Ak transition functions (24) and (26) on the re-evaluated initial k-state Σn

0 .

Definition 9 (Re-evaluated c-states). Let α = [a1; . . . ; an] be a sequence of actions and δ0 = 〈u0,Σ0〉 be a valid initial c-state,

such that Σ0
n is a re-evaluated initial k-state according to Definition 8. We define a re-evaluated c-state, denoted δtn as follows

δtn =
〈
un,Σ

t
n

〉
(28)

where un = Res(an, un−1) and Σt
n =

⋃
s∈Σt−1

n

Res(at, s) (29)

with 0 < t ≤ n

Here, Σt
n is called the re-evaluated k-state.

4.3.3. Soundness ofHPX wrt. ATQS
k

Now that we have defined ATQS
k – a semantics which is (a) based on the possible-worlds semantics and (b) can express temporal

knowledge – we can formally relateHPX with a possible-worlds approach. Theorem 3 considers soundness ofHPX wrt.Ak
TQS

for the projection problem for a sequence of actions.
Soundness is defined wrt. an initial h-state h0 and an arbitrary valid initial c-state of a domain. On the ATQS

k -side, the theorem
considers one valid initial c-state u0, i.e. one possible world which does not contradict the initial knowledge definitions. On the
HPX -side, we argue that there exists one h-state hn such that if a pair 〈l, t〉 is known to hold in hn then l is known to hold in the
re-evaluated k-state Σt

n that results from the valid initial c-state u0. A similar notion of soundness is presented for [48, Proposition
6, Lemma C.4].

Theorem 3 (Soundness ofHPX wrt. Ak
TQS). Let α = [a1; . . . ; an] be a sequence of actions and D a domain specification. Let

〈u0,Σ0〉 be a valid grounded initial c-state of D, such that with Definition 9 the re-evaluated c-state after t ≤ n actions is given
as 〈ut,Σt

n〉 = Φ(at,Φ(at−1, · · ·Φ(a1,
〈
u0,Σ

0
n

〉
))). Then there exists at least one h-state hn ∈ Ψ̂(α,h0) such that for all literals l

and all steps n, t with 0 ≤ t ≤ n:

(hn |= 〈l, t〉)⇒ (Σt
n |= l) (30)

Proof sketch: [Complete proof : Appendix C, Lemma 7]
We prove the theorem by induction over the number of actions. The proof for the base step (n = 0) emerges from the definition
of initial states. For the induction step, we consider the five individual inference mechanisms (9) – (13) and show that each IM is
itself sound.

4.4. The Solvable Fragment ofHPX
The computational complexity of solving the plan-existence problem is in NP, and hence one level below the ΣP

2 complexity of
the same problem in the PWS-based Ak semantics of [48]. This comes at the price that HPX is not complete wrt. PWS-based
approaches. In [14, Sec. 4] we present a detailed empirical evaluation which shows that the solvable fragment of HPX is in most
cases more than 90% of the full set of all projection problem instances (see [14, Fig. 1] for details). However, it is still interesting
to look at a minimal example that demonstrates the incompleteness issue. To this end, consider the minimal Example 8, where
knowledge is generated with a PWS-based approach but not with HPX . The example demonstrates that those problems that
cannot be solved withHPX , but that can be solved with PWS-based approaches, are those where a fluent literal becomes known
to hold because it obtains the same value in more than one possible world by a non-sensing action, and knowledge about the fluent
literal is neither generated by inertia, nor by causation nor by postdiction.

11Consider that according to (25) Res(a, s) = s if a is a sensing action.
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Example 8. Incompleteness ofHPX
Consider the following action falsify(f) that sets a fluent f to ¬f if f is true.

causes (falsify(f),¬f, {f})

Assume that initially it is unknown whether f of ¬f holds and compare how the execution of this action affects knowledge in
1. a PWS-based approach and 2. inHPX :

1. If f is initially unknown, then in a PWS-based approach the agent’s knowledge state is represented by a set of two
possible worlds, denoted Σ0 = {{f}, {¬f}}. If action falsify(f ) is applied to Σ0, then its effect proposition if f

then ¬f is applied to both possible worlds resulting in a successor state Σ1.

Σ0 = {{f}, {¬f}} Σ1 = {{¬f}, {¬f}}
falsify(f)

That is, the first possible world {f} in state Σ0 becomes {¬f} in the successor state Σ1. Since a fluent literal is known
to hold if it is true in all possible worlds, a PWS-based semantics correctly represents that ¬f is known to hold after
executing falsify(f ).

2. With the h-approximation, the initial state would be h0 = 〈∅, ∅〉. Applying falsify(f ) evaluates as follows:

Ψ(falsify(f),h0) = {〈〈falsify(f), 0〉 , ∅〉} = h1 = 〈α1,κ1〉 , with κ1 = ∅

That is, the agent does not acquire any new information about f after executing falsify(f), i.e. κ0 = κ1 = ∅. The only
way to generate knowledge in HPX is either through sensing or one of the inference mechanisms IM.1 – IM.5, none of
which apply in this case.

Fortunately, one can often work around such incompleteness issues in practice by re-formulating effect propositions appropriately.
As an example consider the following non-conditional action falsify2, which might replace the original falsify:

causes (falsify2(f),¬f, ∅)

In practice the outcome of falsify(f) and falsify2(f) is always identical, in that ¬f will always hold after execution; HPX
correctly generates knowledge if falsify2(f) is used instead of falsify(f). A general discussion about this approach is out of
the scope of this paper.

5. Conclusion and Outlook

We present ‘HPX– h-approximation‘, an epistemic action theory based on an approximation of the possible worlds semantics
(PWS) of knowledge. HPX provides native support for postdiction in an elaboration tolerant manner. It is also compuationally
efficient, because within HPX the epistemic state of an agent can be represented with only a linear number of state variables.
Other formalizations that support postdiction in an elaboration tolerant manner require an exponential number of variables. The
lower number of state variables results in a lower computational complexity: the planning problem forHPX is in NP (see Theorem
2), while in traditional approaches it is ΣP

2 -complete [3]. The projection problem is tractable (see Theorem 1). Other approaches
with a comparably low computational complexity require strong restrictions, as for example Bonet & Geffner [6], who do not allow
situations where fluents that are initially unknown appear in the condition of an effect proposition. Similar strong restrictions can
be found in [43].
Tractability of postdictive reasoning is achieved by explicitly representing the temporal dimension of knowledge. An added feature,
basically a side-effect of the temporal dimension of knowledge, is that theHPX formalism also supports reasoning about the past,
a feature which most other PWS-based approaches of knowledge do not have. The only existing implemented system that also
supports reasoning about the past is [31], but this has the disadvantage of exponentially many state variables (see Section 2). We
show that the temporal dimension is important, because it allows HPX to solve problems which involve concurrent acting and
sensing (see Example 9), and to model actions that sense and concurrently change a fluent’s value (e.g. pulling the trigger of a gun
causes one to know whether the gun was loaded, but at the same time the gun unloads.)
We show that the lower computational complexity of HPX comes at the cost that it is incomplete. However, in a follow-up paper
[14], we demonstrate the usefulness of the solvable fragment and the overall theory.
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We envision many possibilities to apply our theory in practice. Indeed, computing explanations and establishing hypotheses based
on observations and partial knowledge is an important capability essential in a wide range of applications, such as the following:

• Robotic delibration, diagnosis and decision making require making sense of incomplete knowldge about the world. Here,
additional postdictive information can be diagnosed by observing robot sensor output. We demonstrate this case in a case
study in [14]. A video that illustrate the usefulness of postdition for abnormality detection in robotics can be found online.12

• Decision support systems in the field of medicine require the means to establish hypothesis based on background (domain)
knowledge and narrative-based observations available from patient records.

• Dynamic geospatial systems is an emerging area of research where changes in qualitative spatio-temporal relationships
between complex aggregate entities at the geospatial scale need to be analysed using high-level commonsense reasoning [5].

• Within spatial design cognition and computation (e.g., for architecture design), the need to perform diagnosis and compute
counterfactual scenarios for incremental or iterative design refinement is clearly recognised.

• Assistive technologies in crime, forensics, and legal reasoning often involve perspective-dependent narratives of temporally
grounded beliefs, and the formation of new beliefs or invalidation of old beliefs based on new knowledge.

In all the areas in the above, postdictive reasoning in the manner developed in this research can provide a computational basis
to establish hypotheses with respect to domain-specific background theories. The postdictive reasoning capability in the manner
supported by the approximate epistemic reasoner developed in this paper can ‘plug’ into a large-scale (hybrid) AI system. We
emphasise, that in particular weak planning is important for real-world robotic domains, because of abnormalities: Weak planning
can take into account that not all circumstances can be modelled, and is hence not restricted to closed artificial domains like string
planning, which relies on the fact that the world model considers all possible abnormalities. A disadvantage of weak planning is
that deadends can not be detected in advance, as e.g. done in the strong planning approach of Muise et al. [39, 38]. This could be
solved by defining a metric for the likeliness of deadends in weak planning, which is another interesting future research direction.

Acknowledgements

Manfred Eppe acknowledges funding by the German Research Foundation (DFG) via the International Research Training Group
on Semantic Integration of Geospatial Information (IRTG-SIGI), as well as funding by the Spanish National Research Council
(CSIC) and the German Academic Exchange Service (DAAD). Mehul Bhatt acknowledges the funding and support of the German
Research Foundation (DFG), www.dfg.de as part of the Spatial Cognition Research (SFB/TR 8). We thank Joohyung Lee for his
review and feedback on this research; especially for his valuable comments concerning the soundness proofs. We thank Bernd
Krieg-Brückner and other DFKI colleagues for providing support with the BAALL environment; in particular, Christian Mandel
and Bernd Gersdorf provided support with the robotic infrastructure of the Rolland wheelchair robot. We also thank Brian Tietzen
for his programming support and technical help in the context of the BAALL environment. This article has been built upon the
following papers at LPNMR 2013 and COMMONSENSE 2013:

• “Approximate Epistemic Planning with Postdiction as Answer-Set Programming” [15]

• “Narrative based postditive reasoning for Cognitive Robotics” [13]

We thank the anonymous reviewers of these papers for their constructive comments and suggestions. We also thank the anonymous
editors and reviewers of previous versions of this article.

12http://www.manfred.eppe.eu/the-hpx-online-planning-system/

17

http://www.manfred.eppe.eu/the-hpx-online-planning-system/


References
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Appendix A. Examples

Appendix A.1. A Modified Yale Shooting Scenario With Concurrent Acting and Sensing

We present an extended version of the well-known Yale shooting problem [19]. It shows that the temporal dimension of knowledge
is required to reason about actions which sense a fluent’s value and concurrently change this value: pulling the trigger of a gun
causes one to sense (by hearing the explosion) whether the gun was loaded. At the same time the gun unloads. If the gun was loaded
then one can conclude that the target is dead.

Example 9. Detailed version of the extended Yale shooting problem
Consider the following domain specification:

initially(alive)

causes(shoot,¬loaded, ∅)
causes(shoot,¬alive, {loaded})
determines(shoot, loaded)

The turkey is initially alive, but it is unknown whether the gun is loaded. Shooting unloads the gun and causes the turkey to be dead if it is
loaded. In addition, shooting causes to know whether the gun was loaded. The task is to infer whether the turkey is dead after the shooting,
depending whether or not the firing of the gun was perceived. InHPX this is possible, because sensing yields the value of a fluent before the
action takes place. That is, if the action is executed at t = 0 then in the resulting state t = 1, knowledge about the loaded-ness at t = 0 is
produced, even if this differs from the loaded-ness in the resulting state t = 1. According to Definition 2 about initial knowledge we have

h0 = 〈{}, {〈alive, 0〉}〉

TheHPX transition function (6) evaluates as:

Ψ(shoot,h0) ={h+
1 ,h

−
1 }, where

h+
1 =eval(〈〈shoot, 0〉 , {〈alive, 0〉} ∪ 〈loaded, 0〉〉

h−1 =eval(〈〈shoot, 0〉 , {〈alive, 0〉} ∪ {〈¬loaded, 0〉}〉

The eval function calls cause (11), and in the case of h+
1 this correctly generates knowledge that the turkey is dead after shooting, i.e. h+

1 |=
〈¬alive, 1〉. In the case of h−1 cause correctly generates knowledge that the turkey is still alive after shooting: h−1 |= 〈alive, 1〉.

21



Appendix A.2. Detailed Inference Examples

Example 10. Knowledge gain through sensing, causation and inertia
Consider domain D2 and the action sequence [drive ; sense open].

D2 =


initially (¬in room)

causes (drive, in room, is open)

determines (sense open, is open)

 (D2)

The state h0 is the initial state where the door’s open state is unknown, and where it is known that the robot is not in the destination room.
The state transition from h0 to h1 represents that the robot drives through the door without actually knowing whether it is open.

h0
κ0 = { 〈¬in room, 0〉}
α0 = {}

h1
κ1 = { 〈¬in room, 0〉}
α1 = { 〈drive, 0〉}

Ψ({drive},h0)

h̃1+

2

κ̃
1+

2 = { 〈¬in room, 0〉 ,
〈is open, 1〉}

α2 = { 〈drive, 0〉 , 〈sense open,1〉}

Ψ({sense open},h1) with 〈is open, 1〉

h̃2+

2

κ̃
2+

2 = { 〈¬in room, 0〉 ,
〈is open, 1〉 , 〈is open,2〉}

α2 = { 〈drive, 0〉 , 〈sense open, 1〉}

fwd(h̃1+

2 )

h̃3+

2

κ̃
3+

2 = { 〈¬in room, 0〉 ,
〈is open, 0〉 〈is open, 1〉 , 〈is open, 2〉}

α2 = { 〈drive, 0〉 , 〈sense open, 1〉}

back(h̃2+

2 )

h̃1−
2

Ψ({sense open},h1)
with 〈¬is open,1〉

h̃4+

2

κ̃
4+

2 = { 〈¬in room, 0〉 , 〈in room, 1〉 ,
〈is open, 0〉 , 〈is open, 1〉 , 〈is open, 2〉}

α2 = { 〈drive, 0〉 , 〈sense open, 1〉}

cause(h̃3+

2 )

State h1 is similar to h0 because the agent does not know whether the door was open at the time of driving. Therefore it does not contain any
new knowledge and we have that κ0 and κ1 are equal. sense open generates two intermediate successor h-states: h̃1+

2 contains the positive
sensing outcome 〈is open, 1〉 and h̃1−

2 contains the negative outcome 〈¬is open, 1〉. For brevity we only consider the positive case. Forward

inertia generates the next intermediate h-state h̃
2+

2 . Consider that no action is applied that could change is open. Therefore we have that
inertial(is open, 1, h̃2+

2 ) holds (8). Consequently, fwd (9) generates knowledge that the door is open in the future and adds 〈is open,2〉
to κ̃2+

2 . The case for next state h̃
3+

2 is similar: Since ¬is open is inertial at step 0 we have that back (10) generates 〈is open,0〉.
In the next step, causation generates knowledge. The action history α2 contains information that drive was executed at step 0. Consequently
there is an effect proposition in the effect history ε(α2) with an effect literal in room and a condition literal is open (see Definition 1). There-
fore, since 〈open, 0〉 holds in h̃3+

2 , cause(h̃3+

2 ) generates 〈in room, 1〉. Note that cause evaluates the effects of actions in a retrospective
manner. That is, knowledge about the effect of driving is generated after sensing whether the door was open.a

a Note that this example considers that the robot first drives through a door without knowing its open-state and then senses the door’s open-state. In practice
it makes much more sense to first sense the door’s open-state and then drive through the door. We consider this less sensible case any ways to illustrate how
forward and backward inertia retrospectively generate knowledge.
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Example 11. Knowledge gain through postdiction
Consider the domain D3 and the action sequence [drive ; sense in room].

D3 =


initially (¬in room)

causes (drive, in room, is open)

determines (sense in room, is room)

 (D3)

With the state transition from h0 to h1 no knowledge is gained because the condition of the drive action is not known to hold.
For the next state transition we have two branches. That is, according to the transition function (6), sense in room generates
two intermediate h-states denoted h̃1+

2 and h̃1−

2 . In h̃1+

2 the robot is considered to be in the room, i.e. h̃1+

2 |= 〈in room, 1〉 and
in h̃1−

2 it is not in the room, i.e. h̃1−

2 |= 〈¬in room, 1〉.

h0
κ0 = { 〈¬in room, 0〉}
α0 = {}

h1
κ1 = { 〈¬in room, 0〉}
α1 = { 〈drive, 0〉}

Ψ({drive},h0)

h̃1+

2
κ̃

1+

2 = { 〈¬in room, 0〉 , 〈in room, 1〉}
α2 = { 〈drive, 0〉 , 〈sense in room, 1〉}

Ψ({sense in room},h1)
with 〈in room, 1〉

h̃2+

2

κ̃
2+

2 = { 〈¬in room, 0〉 , 〈in room, 1〉
〈is open, 0〉}

α2 = { 〈drive, 0〉 , 〈sense in room, 1〉}

pdpos(h̃1+

2 )

h̃1−
2

κ̃
1−
2 = { 〈¬in room, 0〉 , 〈¬in room, 1〉}
α2 = { 〈drive, 0〉 , 〈sense in room, 1〉}

Ψ({sense in room},h1)
with 〈¬in room, 1〉

h̃2−
2

κ̃
2−
2 = { 〈¬in room, 0〉 , 〈¬in room, 1〉

〈¬is open, 0〉}
α2 = { 〈drive, 0〉 , 〈sense in room, 1〉}

pdneg(h̃1−

2 )

In h̃2+

2 it is known that the robot was not in the room when the driving started (〈¬in room, 0〉 ∈ κ̃1+

2 ) but it was in the room after
the driving (〈in room, 1〉 ∈ κ̃1+

2 ). Consequently, positive postdiction generates knowledge that the condition of the drive-action
was true, i.e. 〈is open, 0〉 ∈ addpdpos(h̃1+

2 ).
In h̃2−

2 it is known that the robot was not in the room after the driving (i.e. 〈¬in room, 1〉 ∈ κ̃1−

2 ). Consequently, negative
postdiction generates knowledge that the condition of the drive-action was false, i.e. 〈¬is open, 0〉 ∈ addpdneg (h̃1−

2 ).
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Example 12. Repeated Evaluation
Reconsider domain D3 and the sequence [drive; sense in room] as in Example 11.

D3 =


initially (¬in room)

causes (drive, in room, is open)

determines (sense in room, is room)

 (D3)

State h1 which results from the drive action does not contain additional knowledge because the condition of the drive action (the door being
open) is unknown. Sensing generates an intermediate successor state h̃1+

2 state with h̃1+

2 |= 〈in room, 1〉. Thereafter, evalOnce(h̃1+

2 ) (14)
calls IM.1 – IM.5. The only IM that produces knowledge in this first evaluation step is positive postdiction (12) – IM.4 which adds a pair
〈is open, 0〉. This results in the next intermediate h-state h̃2+

2 .
In the next re-evaluation step, evalOnce(h̃2+

2 ) calls IM.1 – IM.5 again, and forward inertia (9) – IM.1 generates knowledge that the
door is open during the sensing: 〈is open, 1〉. It also generates knowledge that the robot is in the room after the sensing: 〈in room, 2〉.
A third application of evalOnce results in the state h+

2 . Here, forward inertia generates knowledge that the door is open after the sensing:
〈is open, 2〉. The state h+

2 is not an intermediate state because further application of evalOnce will not produce any additional knowledge,
i.e. the re-evaluation process converged.

h0
κ0 = { 〈¬in room, 0〉}
α0 = {}

h1
κ1 = { 〈¬in room, 0〉}
α1 = { 〈drive, 0〉}

Ψ({drive},h0)

h̃1+

2
κ̃

1+

2 = { 〈¬in room, 0〉 , 〈in room, 1〉}
α2 = { 〈drive, 0〉 , 〈sense in room, 1〉}

Ψ({sense in room},h1) with 〈in room, 1〉

h̃2+

2

κ̃
2+

2 = { 〈¬in room, 0〉 , 〈in room, 1〉
〈is open, 0〉}

α2 = { 〈drive, 0〉 , 〈sense in room, 1〉}

evalOnce
(
h̃1+

2

)

h̃3+

2

κ̃
3+

2 = { 〈¬in room, 0〉 , 〈in room, 1〉 , 〈in room, 2〉
〈is open, 0〉 , 〈is open, 1〉}

α2 = { 〈drive, 0〉 , 〈sense in room, 1〉}

evalOnce
(
h̃2+

2

)

h+
2

κ
+
2 = { 〈¬in room, 0〉 , 〈in room, 1〉 , 〈in room, 2〉

〈is open, 0〉 , 〈is open, 1〉 , 〈is open, 2〉}

α
+
2 = { 〈drive, 0〉 , 〈sense in room, 1〉}

evalOnce
(
h̃3+

2

)
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Appendix B. Computational Properties of HPX

This appendix contains Lemmata concerning the computational complexity properties of HPX . These are required for the proofs
of Theorems 1 and 2. As argued in Section 4, we assume in the following that the size of concurrent conditional plans (CCP) is of
polynomial size wrt. D and that the number of sensing actions in the plan is limited.

Appendix B.1. Computational Complexity
Lemma 1 (Applying the transition function is polynomial). Given a set of actions A and a consistent h-state h, applying the
transition function Ψ(A,h) (6) is polynomial.

Proof: Recall the transition function (6 ):

Ψ(A,h) =
⋃

k∈sense(Aex,h)

eval(〈α′,κ(h) ∪ k〉)

The transition function calls the eval function (15) and conjoins its result with sensing results. Conjoining the sensing results is
done in constant time and the number of potential sensing results is |k| ≤ 2. Therefore the computational worst-time complexity is
determined by eval.
To see that eval is polynomial, consider the following: eval(h) calls evalOnce(h) until h converged. We must therefore show that
evalOnce(h) is (i) itself polynomial, and (ii) called at most polynomially often wrt. h. (i) is shown with Lemma 2 and (ii) is shown
with Lemma 3. �

Lemma 2 (Applying evalOnce (14) is polynomial). Applying evalOnce(h) (14) is polynomial for an arbitrary h-state h and a
domain D.

Proof: evalOnce (14) calls the five inference mechanisms (9) – (13), i.e. fwd, back, causal, pdpos and pdneg . All atomic opera-
tions (like concatenation of sets) in (9) – (13) are executed in linear or constant time. Quantifications in (9) – (13) are always either
over the applied effect propositions, the condition literals in an effect proposition or over the elements in κ(h) which are all sets of
constant size wrt. h and D. Therefore evalOnce(h) is polynomial wrt. h and D. �

Lemma 3 (Function evalOnce is called constantly often by eval). Let |LD| be the number of literals in a domain D with the
initial h-state h0. Let p be a conditional plan and h ∈ Ψ̂(p,h0) be an arbitrary leaf state resulting from applying the extended
transition function. Then evalOnce(h) (14) is called at most |LD| · now(h) times by eval(h) (15).

Proof: It is easy to see that the maximum size of the knowledge history κ(h) is |LD| · now(h). Lemma 4 proves monotonicity of
evalOnce: that is, for a pair 〈l, t〉, if h |= 〈l, t〉 then evalOnce(h) |= 〈l, t〉. Therefore at most |LD| · now(h) changes can be made
to κ(h) until convergence is achieved. Thus, evalOnce can only be called at most |LD| · now(h) times. �

Appendix B.2. Knowledge-persistence and Monotonicity of Re-evaluation
The following Lemmata capture that knowledge can not get lost, i.e.HPX -agents do not “forget” knowledge.

Lemma 4 (Re-evaluation is monotonic). LetD be a domain description with an initial state h0 and p be a conditional concurrent
plan. For all leaf states h ∈ Ψ̂(p,h0) it holds that

∀ 〈l, t〉 : (h |= 〈l, t〉 ⇒ evalOnce(h) |= 〈l, t〉) (B.1)

and
∀ 〈l, t〉 : (h |= 〈l, t〉 ⇒ eval(h) |= 〈l, t〉) (B.2)

Proof: The proof of (B.1) follows from a simple syntactic investigation of five IM (9) – (13) which are called by evalOnce. Recall
the definition of evalOnce (14):

evalOnce(h) = pdneg(pdpos(cause(back(fwd(h)))))

Let the following hold for an h-state h = 〈α,κ〉:

fwd(h) = h̃fwd = 〈α(h),κ(h) ∪ addfwd(h)〉

back(fwd(h)) = h̃back =
〈
α(h),κ(hfwd) ∪ addback(hfwd)

〉
cause(back(fwd(h))) = h̃cause = 〈α(h),κ(hback) ∪ addcause(hback)〉

pdpos(cause(back(fwd(h)))) = h̃pdpos = 〈α(h),κ(hcause) ∪ addpdpos(hcause)〉

pdneg(pdpos(cause(back(fwd(h))))) = h̃pdneg =
〈
α(h),κ(hpdpos) ∪ addpdneg (hpdpos)

〉
(B.3)
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then evalOnce(h) = h̃pdneg .
From (B.3) we extract the following implications:

∀ 〈l, t〉 :
(
〈l, t〉 ∈ κ(h)⇒ 〈l, t〉 ∈ κ(hfwd)⇒ 〈l, t〉 ∈ κ(hback)

⇒〈l, t〉 ∈ κ(hcause)⇒ 〈l, t〉 ∈ κ(hpdpos)⇒ 〈l, t〉 ∈ κ(evalOnce(h))
) (B.4)

It follows by (B.4) that
∀ 〈l, t〉 : (〈l, t〉 ∈ κ(h)⇒ 〈l, t〉 ∈ κ(evalOnce(h))) (B.5)

The definition of the |= operator (5b) is :
∀l, t : (h |= 〈l, t〉 ⇔ 〈l, t〉 ∈ κ(h)) (B.6)

Consequently, ∀ 〈l, t〉 : h |= 〈l, t〉 ⇒ evalOnce(h) |= 〈l, t〉 (B.1) is true.
The proof of (B.2) follows from (B.1) and the recursive definition of eval (15). �

Lemma 5 (Knowledge-persistence for CCP). Consider an h-state h a concurrent conditional plan p. Then (B.7) holds:

∀l, t,h′ ∈ Ψ̂(p,h) :
(
h |= 〈l, t〉 ⇒ h′ |= 〈l, t〉

)
(B.7)

Proof: We perform induction over the structure of a CCP p.

1. p = []

In this case Ψ̂([],h) = {h} and the lemma trivially holds.

2. p = [a1|| . . . ||an]

In this case Ψ̂([a1|| . . . ||an],h) = Ψ({a1, . . . , an},h). Recall the transition function (6):

Ψ({a1, . . . , an},h) =
⋃

k∈sense({a1,...,an},h)

eval(〈α′,κ(h) ∪ k〉) (B.8)

If follows trivially that (B.9) holds.

∀l, t, k ∈ sense({a1, . . . , an},h) :
(
h |= 〈l, t〉 ⇒ κ(h) ∪ k |= 〈l, t〉

)
(B.9)

Lemma 4 shows that eval is monotonic, i.e. (B.10) holds.

∀l, t, k ∈ sense({a1, . . . , an},h) :
(
h |= 〈l, t〉 ⇒ eval(〈α′,κ(h) ∪ k〉) |= 〈l, t〉

)
(B.10)

Consequently, (B.8) is true.

3. p = [p1; p2] where p1, p2 are CCP
This follows directly from the induction hypothesis and the extended transition function (16).

4. p = [if l then p1 else p2] where p1, p2 are CCP
This follows directly from the induction hypothesis and the extended transition function (16).

�

Appendix B.3. Knowledge Producing Mechanisms

The following Lemma states that if knowledge is produced then it is either produced by sensing or one of the five inference
mechanisms:

Lemma 6 (Knowledge producing mechanisms for single state transitions). Given a domainD, an h-state h and a set of actions
A. Then for all h-states h′ ∈ Ψ(A,h) it holds that a pair 〈l, t〉 can only be contained in the knowledge history κ(h′) if and only if
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it was produced by sensing or one of the inference mechanisms IM.1–IM.5 (9) – (13). This is formally expressed as follows:

∀ 〈l, t〉 : 〈l, t〉 ∈ κ(h′)⇔(
〈l, t〉 ∈ κ(h)

∨ 〈l, t〉 ∈ addfwd(h′)

∨ 〈l, t〉 ∈ addback(h′)

∨ 〈l, t〉 ∈ addcause(h′)
∨ 〈l, t〉 ∈ addpdpos(h′)

∨ 〈l, t〉 ∈ addpdneg (h′)

∨{〈l, t〉} ∈ sense({A,h})
)

(B.11)

Proof:
This follows from the constitution of the transition function (6) and the re-evaluation functions. Recall (6):

Ψ(A,h) =
⋃

k∈sense(A,h)

eval(〈α′,κ(h) ∪ k〉)

where eval is recursively defined as follows:

eval(〈α′,κ(h) ∪ k〉) ={
h if evalOnce(〈α′,κ(h) ∪ k〉) = 〈α′,κ(h) ∪ k〉
eval(evalOnce(〈α′,κ(h) ∪ k〉)) otherwise

Recall evalOnce (refeq:evalOnce):

evalOnce(〈α′,κ(h) ∪ k〉) = pdneg(pdpos(cause(back(fwd(〈α′,κ(h) ∪ k〉))))

The⇒ direction of (B.11) follows directly from syntactic investigation of Ψ, eval and the constitution of the inference mechanism
functions fwd, back, cause, etc.: each of the five inference mechanisms calls one add-function (addfwd, addback, addcause, etc.)
which generates additional pairs 〈l, t〉. For example fwd(h) = 〈α(h),κ(h) ∪ addfwd(h)〉.
By Lemma 4 it holds that no knowledge is removed from the knowledge history of an h-state. Hence if for some h-state h it holds
that 〈l, t〉 ∈ addIM (h), then 〈l, t〉 ∈ eval(h) (where IM is either add,back,cause, etc.). This proves the⇒ direction of (B.11).
The ⇐ direction of (B.11) follows from the observation that there is no other operation within the transition function which
generates a pair 〈l, t〉. �
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Appendix C. HPX and ATQS
k Semantics

Appendix C.1. Illustrating Examples for Ak and ATQS
k

Example 13. PWS-based Ak semantics
Consider the following domain description.

initially(¬in room)
causes(drive, in room, is open)
determines(sense in room, in room, ¬in room)

A robot can execute an action drive to get into the living room if the door to the room is open. A fluent in room denotes that
it is in the living room and a fluent is open denotes that the door is open. A sensing action sense in room can be executed to
determine whether or not the robot is in the living room. The state transitions that we are interested in are depicted as follows:

δ0:a
u0:a = {is open}
Σ0:a = {{is open}, {}}

δ1:a
u1:a = {is open}
Σ1:a = {{is open,in room}, {}}

δ2:a
u2:a = {is open}
Σ2:a = {{is open,in room}}

Φ(drive, δ0:a)

Φ(sense in room, δ1:a)

δ0:b
u0:b = {}
Σ0:b = {{is open}, {}}

δ1:b
u1:b = {}
Σ1:b = {{is open,in room}, {}}

δ2:b
u2:b = {}
Σ2:b = {{}}

Φ(drive, δ0:b)

Φ(sense in room, δ1:b)

Initially it is known that the robot is not in the living room and it is unknown whether the door is open. This results in two valid
initial c-states: δ0:a = 〈u0:a,Σ0:a〉 and δ0:b = 〈u0:b,Σ0:b〉. Here, u0:a and u0:b represent two initial possible worlds where the
door may be open or not, i.e. u0:a = {open} and u0:b = {}. Σ0:a and Σ0:b represent two possible knowledge-states wrt. the
possible worlds u0:a and u0:b. Initially these are identical, i.e. Σ0:a = Σ0:b.
Applying the transition function (24) with drive results in the next states δ1:a and δ1:b. Here we have that u1:a = {open, in room}
and u1:b = {}. In the second possible world u1:b the robot is stuck in front of a closed door. The knowledge-states in the two
possible worlds are again identical because so far no sensing has happened, i.e. Σ1:a = Σ1:b.
To model the sensing action the transition function (26) generates the next c-states δ2:a and δ2:b. The sensing “transfers” infor-
mation about being in the living room or not from the actual world to the knowledge state. This is done by eliminating these
states which are “incompatible” with the possible worlds u1:a, resp. u1:b. This causes two possible knowledge states wrt. each
individual possible world, Σ2:a = {{open, {in room}} and Σ2:b = {}}. In Σ2:a state it is known that the robot is in the living
room and the door is open and in Σ2:b it is known that the robot is stuck at the closed door, not being in the living room.
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Example 14. Ak
TQS semantics

Consider the c-state δ2:a from Example 13. The originalAk semantics allows one to infer that after the sensing the robot knows
that the door is open and that it is in the living room, i.e. Σ2:a = {is open, in room}. However, it does not allow one to infer
whether the robot knows that the door was already open before the sensing, i.e. at a step t = 1. Our Temporal Query Semantics
supports this inference as follows: Let δ2:a = 〈u2:a,Σ2:a〉 = 〈{is open, in room}, {{is open, in room}}〉. Then applying (27)
for re-evaluated initial k-states yields

Σ0
2:a = {s0 ∈ Σ0:a|Res(sense in room, Res(drive, s0)) ∈ Σ2:a} = {is open}

The re-evaluation step (28) produces

Σ1
2:a = Res(drive, {is open}) = {{is open, in room}}

In other words,ATQS
k can express the temporal statement “after the sensing the robot knows that it was in the living room before

the sensing”.

δ2:a
u2:a = {is open}
Σ2:a = {{is open}}

Σ
0
2:a = {{in room}, {is open}}

δ1
2:a

u2:a = {is open}

Σ
1
2:a = {{is open}}

Re-evaluate initial k-state (27)

Re-evaluate c-state (28)

Appendix C.2. Soundness proof

Recall Theorem 3 which states thatHPX is sound wrt. the Ak
TQS semantics.

Theorem 3 (Soundness ofHPX wrt. Ak
TQS). Let α = [a1; . . . ; an] be a sequence of actions and D a domain specification. Let

〈u0,Σ0〉 be a valid grounded initial c-state of D, such that with Definition 9 the re-evaluated c-state after t ≤ n actions is given
as 〈ut,Σt

n〉 = Φ(at,Φ(at−1, · · ·Φ(a1,
〈
u0,Σ

0
n

〉
))). Then there exists at least one h-state hn ∈ Ψ̂(α,h0) such that for all literals l

and all steps n, t with 0 ≤ t ≤ n:

(hn |= 〈l, t〉)⇒ (Σt
n |= l) (C.1)

Due to restrictions in Ak, we forbid that actions can happen concurrently. That is, if an action has a knowledge proposition then it
can not have an effect proposition. Recall the following notational conventions from Section 3:

• D is a domain specification.

• αn = [a1; . . . ; an] and αn+1 = [a1; . . . ; an; an+1] are sequences of actions.

• h0 is the initial h-state of D.

• hn ∈ Ψ̂([a1; . . . ; an],h0) is an h-state which results from applying the extended transition function on h0. Similar for hn+1.

• δ0 = 〈u0,Σ0〉 is an arbitrary valid initial c-state of D.

• δn = 〈un,Σn〉 = Φ(an,Φ(an−1, · · ·Φ(a1, δ0))) is a c-state obtained by applying the Ak transition functions (24), (26).
Similar for δn+1.
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• Σ0
n and Σ0

n+1 are the re-evaluated initial k-states as described in Definition 8:

Σ0
n = {s0|s0 ∈ Σ0 ∧Res(an, Res(an−1, · · ·Res(a1, s0))) ∈ Σn}

and similar for Σ0
n+1.

• Σt
n and Σt

n+1 are re-evaluated k-states as described in Definition 9:

Σt
n =

⋃
s∈Σ0

n

Res(at, Res(at−1, · · ·Res(a1, s)))

with 0 ≤ t ≤ n and similar for Σt
n+1 with 0 ≤ t ≤ n+ 1 .

With these conventions Theorem 3 is rewritten as Lemma 7.

Lemma 7 (Soundness ofHPX wrt. ATQS
k for sequences of actions).

∀n : ∃hn ∈ Ψ̂(αn,h0) : ∀l, t :
(
hn |= 〈l, t〉 ⇒ Σt

n |= l
)

with t ≤ n.
(C.2)

Proof:
Induction over the number of actions n. The base step n = 0 is stated in Lemma 8. The induction step (n → n + 1) is stated in
Lemma 9. �

Appendix C.2.1. Base Step: Initial Knowledge
Lemma 8 considers soundness of knowledge in the initial state (n = 0). Since t ≤ n it holds that t = 0.

Lemma 8 (Soundness of the initial state). Let D be a domain description and δ0 = 〈u0,Σ0〉 a grounded valid initial c-state of

D and h0 be the initial h-state of D. Then (C.3) holds.

∀l : h0 |= 〈l, 0〉 ⇒ Σ0
0 |= l (C.3)

Proof:
Definition 2 concerning the initial h-state h0, Definition 8 concerning the re-evaluated initial k-state and the definition of initial
knowledge in [48, p. 28, Definition 3] directly prove the Lemma. �

Appendix C.2.2. Induction Step: Knowledge Gain for Single State Transitions
The induction step reflects that after the n + 1-th state transition is performed then there exists at least one h-state hn+1 resulting
from the state transition such that hn+1 |= 〈l, t〉 ⇒ Σt

n+1 |= l. This is formalized in Lemma 9.

Lemma 9 (Soundness ofHPX wrt. ATQS
k for single state transitions). Let hn ∈ Ψ̂(αn,h0) be an h-state such that (C.4)

holds. Then (C.5) holds as well.

∀l, t : (hn |= 〈l, t〉)⇒ (Σt
n |= l) (C.4)

∃hn+1 ∈ Ψ(an+1,hn) :

∀l, t : (hn+1 |= 〈l, t〉)⇒ (Σt
n+1 |= l)

(C.5)

with t ≤ n+ 1.
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Proof:
We fist make some substitutions and generalize over possible sensing results to eliminate the ∃-quantification over h-states. This
allows us to perform induction over pairs 〈l, t〉.
(C.5)

Recall theHPX -transition function (6).

Ψ(an+1,hn) =
⋃

k∈sense({an+1},hn)

eval(〈αn+1,κn ∪ k)〉)

where αn+1 = α(hn) ∪ {〈an+1, now(hn)〉} and κn = κ(hn). Lemma 10 states that now(hn) = n. With this we substitute in
(C.5) and obtain (C.6)

∃hn+1 ∈
⋃

k∈sense({an+1},hn)

eval(〈αn+1,κn ∪ k〉) :

∀l, t : (hn+1 |= 〈l, t〉)⇒ (Σt
n+1 |= l)

(C.6)

with t ≤ n+ 1.

To prove (C.6) we make a generalization which eliminates the ∃-quantification over hn+1. To this end consider the sense function
(7) which we rewrite as (C.7).

sense({an+1},hn) =


{{〈fs, ts〉}, {〈¬fs, ts〉}} if KPan+1 = fs∧

{〈fs, ts〉 , 〈¬fs, ts〉} ∩ κn = ∅
{∅} otherwise

(C.7)

where ts = now(hn). By Lemma 10 it holds that ts = n.
Let un denote the state which results from the application of the first n actions on the initial state u0. This is formally expressed
by (C.8).

un = Res(an, Res(an−1, · · ·Res(an, u0))) (C.8)

Since un is a set of fluent symbols there must be one sensing result k ∈ sense({an+1},hn) which corresponds to un. This
correspondence is denoted by an auxiliary boolean function corrSense(k, an+1,hn, un) (C.9).

corrSense(k, an+1,hn, un)⇔(
k ∈ sense({an+1},hn)∧(
(k = {∅}) ∨ (k = {〈fs, n〉} ∧ fs ∈ un) ∨ (k = {〈¬fs, n〉} ∧ fs 6∈ un)

)) (C.9)

where fs = KPan+1 . Consequently, in order to show that (C.6) holds it is sufficient to show that (C.10) holds.

∀l, t, k :
(
(eval(〈αn+1,κn ∪ k〉) |= 〈l, t〉)
⇒ (Σt

n+1 |= l)
) (C.10)

with t ≤ n+ 1 and corrSense(k, an+1,hn, un) holds.

To prove (C.10) we perform induction according to the structure of (B.11) in Lemma 6 over pairs 〈l, t〉.
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Let hk
n+1 = eval(〈αn+1,κn ∪ k〉 such that corrSense(k, an+1,hn, un holds. Then (B.11) rewrites as follows:

∀ 〈l, t〉 : 〈l, t〉 ∈ κ(hk
n+1)⇔

(
〈l, t〉 ∈ κ(hn)

∨{〈l, t〉} ∈ sense({an+1},hn)

∨ 〈l, t〉 ∈ addfwd(hk
n+1)

∨ 〈l, t〉 ∈ addback(hk
n+1)

∨ 〈l, t〉 ∈ addcause(hk
n+1)

∨ 〈l, t〉 ∈ addpdpos(hk
n+1)

∨ 〈l, t〉 ∈ addpdneg (hk
n+1)

)
From (B.11) we extract the set of implications (C.11).

∀ 〈l, t〉 : 〈l, t〉 ∈ κk
n+1 ⇐〈l, t〉 ∈ κ(hn) (C.11a)

∀ 〈l, t〉 : 〈l, t〉 ∈ κk
n+1 ⇐{〈l, t〉} ∈ sense({an+1},hn) (C.11b)

∀ 〈l, t〉 : 〈l, t〉 ∈ κk
n+1 ⇐〈l, t〉 ∈ addfwd(hk

n+1) (C.11c)

∀ 〈l, t〉 : 〈l, t〉 ∈ κk
n+1 ⇐〈l, t〉 ∈ addback(hk

n+1) (C.11d)

∀ 〈l, t〉 : 〈l, t〉 ∈ κk
n+1 ⇐〈l, t〉 ∈ addcause(h

k
n+1) (C.11e)

∀ 〈l, t〉 : 〈l, t〉 ∈ κk
n+1 ⇐〈l, t〉 ∈ addpdpos(hk

n+1) (C.11f)

∀ 〈l, t〉 : 〈l, t〉 ∈ κk
n+1 ⇐〈l, t〉 ∈ addpdneg (hk

n+1) (C.11g)

where κk
n+1 = κ(hk

n+1).
Two implications generate knowledge about a pair 〈l, t〉 independently from other pairs 〈l′, t′〉 with 〈l, t〉 6= 〈l′, t′〉. These are the
cases (C.11a) and (C.11b). Since a soundness proof for these cases does not rely on the induction hypothesis we consider these
cases for the base steps.
The remaining implications (C.11c), (C.11d), (C.11e), (C.11f) and (C.11g) produce 〈l, t〉 but rely on knowledge about 〈l′, t′〉 with
〈l, t〉 6= 〈l′, t′〉. For example a pair 〈l, t〉 is produced by the forward inertia function addfwd(hk

n+1) if 〈l, t− 1〉 is known to hold in
hk
n+1. These implications are considered in the induction step because proving soundness relies on the induction hypothesis. The

induction is complete because (B.11) is a bi-implication, i.e. all pairs 〈l, t〉 are reached.

Base Step 1 – (C.11a)
Recall (C.10):

∀l, t, k : (hk
n+1 |= 〈l, t〉)⇒ (Σt

n+1 |= l)

with t ≤ n+ 1.

Consider (C.11a): ∀ 〈l, t〉 :
(
hk
n+1 |= 〈l, t〉 ⇐ 〈l, t〉 ∈ κ(hn)

)
∀l, t :

(
(〈l, t〉 ∈ κ(hn))⇒ (Σt

n+1 |= l)
)

(C.12)

with t ≤ n+ 1.

By (C.4) the following holds: ∀l, t :
(
(〈l, t〉 ∈ κ(hn))⇒ (Σt

n |= l)
)
. Therefore, to show that (C.12) holds it is sufficient to show

that (C.13) holds.

∀l, t :
(
(Σt

n |= l)⇒ (Σt
n+1 |= l)

)
with t ≤ n+ 1. (C.13)

Lemma 11 states that (C.13) is true and we have proven base step 1.
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Base Step 2 – (C.11b)
Recall (C.10):

∀l, t, k : (corrSense(k, an+1,hn, un) ∧ hk
n+1 |= 〈l, t〉)⇒ (Σt

n+1 |= l)

with t ≤ n + 1.

Consider (C.11b):
∀ 〈l, t〉 : hk

n+1 |= 〈l, t〉 ⇐ 〈l, t〉 ∈ κ(hn)

∀l, t, k :
(
corrSense(k, an+1,hn, un) ∧ {〈l, t〉} ∈ sense({an+1},hn)⇒ (Σt

n+1 |= l)
)

(C.14)

with t ≤ n + 1.

Reconsider corrSense(k, an+1,hn, un) (C.9):

corrSense(k, an+1,hn, un)⇔(
k ∈ sense({an+1},hn)∧(
(k = {∅}) ∨ (k = {〈fs, n〉} ∧ fs ∈ un) ∨ (k = {〈¬fs, n〉} ∧ fs 6∈ un)

))
Reconsider the sense function (C.7):

sense({an+1},hn) =


{{〈fs, n〉}, {〈¬fs, n〉}} if KPa = fs∧

{〈fs, n〉 , 〈¬fs, n〉} ∩ κn = ∅
{∅} otherwise

Consequently, if {〈l, t〉} ∈ sense({an+1},hn) then one of the following cases is true:

1. 〈l, t〉 = 〈fs, n〉 ∧ fs ∈ un)

2. 〈l, t〉 = 〈¬fs, n〉 ∧ fs ∈ un)

where KPa = fs.
We have to show that (C.14) holds in both cases. For brevity we show only case 1 (C.15). Case 2 is analogous.

∀l, t :
(
〈l, t〉 = 〈fs, n〉 ∧ fs ∈ un) ∧ {〈l, t〉} ∈ sense({an+1},hn)⇒ (Σt

n+1 |= l)
)

(C.15)

with t ≤ n + 1 and KPa = fs.

To show that (C.15) holds it is sufficient to show that (C.16) holds.

(fs ∈ un)⇒ (Σn
n+1 |= fs) (C.16)

with t ≤ n + 1 and KPa = fs.

By transition function for sensing actions (26):

(fs ∈ un)⇒
(
Σn+1 = {s|(s ∈ Σn) ∧ (fs ∈ s)}

)
It follows that (C.17) holds.

(fs ∈ un)⇒ (∀s ∈ Σn+1 : fs ∈ s) (C.17)

(∀s ∈ Σn+1 : fs ∈ s)⇒ (Σn
n+1 |= fs) (C.18)

with t ≤ n + 1 and KPa = fs.

By Lemma 12: Σn+1 = Σn+1
n+1

(∀s ∈ Σn+1
n+1 : fs ∈ s)⇒ (Σn

n+1 |= fs) (C.19)

with t ≤ n + 1 and KPa = fs.
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(C.19)

By (29): Σn+1
n+1 =

R⋃
s∈Σn

n+1

es(an+1, s)

Recall that we restrict that sensing actions do not have effect propositions. Since KPan+1 = fs it holds that an+1 is a sensing action and has
no effect propositions. Therefore, by the Ak result function (25):

∀s ∈ Σn
n+1 : Res(an+1, s) = s

And consequently Σn
n+1 = Σn+1

n+1.

(∀s ∈ Σn
n+1 : fs ∈ s)⇒ (Σn

n+1 |= fs) (C.20)

with t ≤ n + 1 and fs = KPa.

By definition of |= (5): Σn
n+1 |= fs ⇔ (∀s ∈ Σn

n+1 : fs ∈ s).

This shows that (C.20) is true. Therefore base step 2 (C.12) is true.

Induction Step 1 – (C.11c)
Recall (C.10):

∀l, t, k : (hk
n+1 |= 〈l, t〉)⇒ (Σt

n+1 |= l)

with t ≤ n + 1.

Consider (C.11c):
∀ 〈l, t〉 : hk

n+1 |= 〈l, t〉 ⇐ 〈l, t〉 ∈ addfwd(hk
n+1)

∀l, t, k :
(
〈l, t〉 ∈ addfwd(hk

n+1)⇒ (Σt
n+1 |= l)

)
(C.21)

with t ≤ n + 1.

Consider the definition of addfwd (9):

addfwd(hk
n+1) = {〈l, t〉 |( 〈l, t− 1〉 ∈ κ(hk

n+1)∧

inertial(l, t− 1,hk
n+1) ∧ t ≤ now(hk

n+1))}

By Lemma 10 it holds that now(hk
n+1) = n + 1. To prove that (C.21) holds we prove that (C.22) holds.

∀l, t, k :
((
〈l, t− 1〉 ∈ κk

n+1 ∧ inertial(l, t− 1,hk
n+1)

)
⇒ (Σt

n+1 |= l)
)

(C.22)

with t ≤ n + 1.

Consider the definition of inertial (8):

inertial(l, t− 1,hk
n+1)⇔∀〈ep, t− 1〉 ∈ ε(hk

n+1) :(
e(ep) = l

)
⇒
(
∃lc ∈ c(ep) :

〈
lc, t− 1

〉
∈ κ(hk

n+1)
)

To prove that (C.22) holds we prove that (C.23) holds.

∀l, t, k :
((
〈l, t− 1〉 ∈ κk

n+1∧(
∀ep :

(
〈ep, t− 1〉 ∈ ε(hk

n+1)⇒(
(e(ep) 6= l) ∨ (∃lc ∈ c(ep) :

〈
lc, t− 1

〉
∈ κk

n+1)
)))

⇒ (Σt
n+1 |= l)

) (C.23)

with t ≤ n + 1.
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(C.23)

By induction hypothesis: (〈l, t− 1〉 ∈ κk
n+1)⇒ (Σt−1

n+1 |= l).

By definition of |= (23):
(

Σt−1
n+1 |= l

)
⇒
(
∀s ∈ Σt−1

n+1 : s |= l
)
.

∀l, t, k :
((

(∀s ∈ Σt−1
n+1 : s |= l) ∧

(
∀ep :

(
〈ep, t− 1〉 ∈ ε(hk

n+1)⇒
(
(e(ep) 6= l) ∨ (∃lc ∈ c(ep) :

〈
lc, t− 1

〉
∈ κk

n+1)
)))

⇒ (Σt
n+1 |= l)

) (C.24)

with t ≤ n + 1.

By the definition of effect histories (3) and the extended transition function (16): 〈ep, t− 1〉 ∈ ε(hk
n+1) ⇒ (ep ∈ EPat). To show that

(C.24) holds it is sufficient to show that (C.25) holds.

∀l, t, k :
((
∀s ∈ Σt−1

n+1 : s |= l
)
∧
(
∀ep ∈ EPat :

(
(e(ep) 6= l) ∨ (∃lc ∈ c(ep) :

〈
lc, t− 1

〉
∈ κk

n+1)
)))

⇒ (Σt
n+1 |= l)

) (C.25)

with t ≤ n + 1.

By definition of re-evaluated k-states (29): Σt
n+1 =

⋃
s∈Σt−1

n+1

Res(at, s).

By definition of |= (23):
( ⋃
s∈Σt−1

n+1

Res(at, s) |= l
)
⇒ (∀s ∈ Σt−1

n+1 : Res(at, s) |= l).

∀l, t, k :
((
∀s ∈ Σt−1

n+1 : s |= l
)
∧
(
∀ep ∈ EPat :

(
(e(ep) 6= l) ∨ (∃lc ∈ c(ep) :

〈
lc, t− 1

〉
∈ κk

n+1)
)))

⇒ (∀s ∈ Σt−1
n+1 : Res(at, s) |= l)

) (C.26)

with t ≤ n + 1.

Case Distinction
To prove (C.26) we consider two cases for effect propositions ep, namely e(ep) 6= l and ∃lc ∈ c(ep) :

〈
lc, t
〉
∈ κk

n+1. We show
that (C.26) holds in both cases.

1. e(ep) 6= l (Effect propositions do not have a complementary effect literal.)

(C.26)

We consider only cases where (C.27) holds.
e(ep) 6= l (C.27)

This simplifies (C.26) to (C.28).

∀l, t :
((
∀s ∈ Σt−1

n+1 : s |= l
)
∧
(
∀ep ∈ EPat : e(ep) 6= l

)
⇒ (∀s ∈ Σt−1

n+1 : Res(at, s) |= l)
) (C.28)

with t ≤ n + 1.
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(C.28)

Recall the Ak result function (25):

Res(at, s) = s ∪ E+
at

(s) \ E−at
(s) where

E+
at

(s) = {f |∃ep ∈ EPat : e(ep) = f ∧ s |= c(ep)}

E−at
(s) = {f |∃ep ∈ EPat : e(ep) = ¬f ∧ s |= c(ep)}

We distinguish two cases:

(a) l = f ∧ ∀ep ∈ EPat : (e(ep) 6= ¬f)
In this case E−at

(s) = ∅. Therefore: ∀s ∈ Σt−1
n+1 : (s |= f ⇒ Res(at, s) |= f)

(b) l = ¬f ∧ ∀ep ∈ EPat : (e(ep) 6= f)
In this case E+

at
(s) = ∅. Therefore: ∀s ∈ Σt−1

n+1 : (s |= ¬f ⇒ Res(at, s) |= ¬f)

Consequently:
∀l, t :

((
∀ep ∈ EPat : (e(ep) 6= l)

)
⇒
(
∀s ∈ Σt−1

n+1 : (s |= l⇒ Res(at, s) |= l)
))

(C.29)

It follows from (C.29) that (C.28) holds.

2. (∃lc ∈ c(ep) :
〈
lc, t− 1

〉
∈ κk

n+1) (Effect propositions have a condition literal which is known not to hold.)

(C.26)

We consider only cases where (C.30) holds.

∃lc ∈ c(ep) :
〈
lc, t− 1

〉
∈ κk

n+1 (C.30)

This simplifies (C.26) to (C.31).

∀l, t, k :
((
∀s ∈ Σt−1

n+1 : s |= l
)
∧
(
∀ep ∈ EPat : (∃lc ∈ c(ep) :

〈
lc, t− 1

〉
∈ κk

n+1)
)

⇒ (∀s ∈ Σt−1
n+1 : Res(at, s) |= l)

) (C.31)

with t ≤ n + 1.

Recall the Ak result function (25):
Res(at, s) = s ∪ E+

at
(s) \ E−at

(s) where

E+
at

(s) = {f |∃ep ∈ EPat : e(ep) = f ∧ s |= c(ep)}

E−at
(s) = {f |∃ep ∈ EPat : e(ep) = ¬f ∧ s |= c(ep)}

We distinguish two cases:

(a) l = f ∧ ∀ep ∈ EPat : (∃lc ∈ c(ep) :
〈
lc, t− 1

〉
∈ κk

n+1)

By induction hypothesis we derive the following:

∀lc ∈ c(ep) :
(
(
〈
lc, t− 1

〉
∈ κk

n+1)⇒ Σt−1
n+1 |= lc

)
In this case clearly ∀s ∈ Σt−1

n+1 : E−at
(s) = ∅.

Therefore: ∀s ∈ Σt−1
n+1 : (s |= f ⇒ Res(at, s) |= f).

(b) l = ¬f ∧ ∀ep ∈ EPat : (∃lc ∈ c(ep) :
〈
lc, t− 1

〉
∈ κk

n+1)
It follows similarly to case a) that E+

at
(s) = ∅.

Therefore: ∀s ∈ Σt−1
n+1 : (s |= ¬f ⇒ Res(at, s) |= ¬f)

From a) and b) follows:
∀l, t :

((
∀ep ∈ EPat : (e(ep) 6= l)

)
⇒
(
∀s ∈ Σt−1

n+1 : (s |= l⇒ Res(at, s) |= l)
))

(C.32)

It follows from (C.32) that (C.31) holds.

Induction Step 2 – (C.11d)
This is analogous to induction step 1 – (C.11c).
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Induction Step 3 – (C.11e)
This is analogous to the following induction step 4 – (C.11f).

Induction Step 4 – (C.11f)
Recall (C.10):

∀l, t, k : (hk
n+1 |= 〈l, t〉)⇒ (Σt

n+1 |= l)

with t ≤ n + 1.

Recall (C.11f):
∀ 〈l, t〉 : hk

n+1 |= 〈l, t〉 ⇐ 〈l, t〉 ∈ addpdpos(hk
n+1)

∀l, t, k :
(
〈l, t〉 ∈ addpdpos(hk

n+1)⇒ (Σt
n+1 |= l)

)
(C.33)

with t ≤ n + 1.

Consider the definition of addpdpos (12):

addpdpos(hk
n+1) = {〈lc, t〉 |∃ 〈ep, t〉 ∈ ε(hk

n+1) :
(
lc ∈ c(ep) ∧ 〈le, t + 1〉 ∈ κ(hk

n+1) ∧
〈
le, t
〉
∈ κ(hk

n+1)

∧
(
∀
〈
ep′, t

〉
∈ ε(hk

n+1) :
(
ep′ = ep ∨ e(ep′) 6= le

)))
To prove that (C.33) holds we prove that (C.34) holds.

∀l, t, k :
((
∃ep :

(
〈ep, t〉 ∈ ε(hk

n+1) ∧ e(ep) = le ∧ l ∈ c(ep) ∧ 〈le, t + 1〉 ∈ κ(hk
n+1) ∧

〈
le, t
〉
∈ κ(hk

n+1)∧

(∀
〈
ep′, t

〉
∈ ε(hk

n+1) : (ep′ = ep ∨ e(ep′) 6= le))
))
⇒ (Σt

n+1 |= l)
) (C.34)

with t ≤ n + 1.

By the definition of effect histories (3) and the extended transition function (16) it holds that:

〈ep, t〉 ∈ ε(hk
n+1)⇒ (ep ∈ EPat+1)

To prove that (C.34) holds we prove that (C.35) holds.

∀l, t, k :
((
∃ep :

(
ep ∈ EPat+1 ∧ e(ep) = le ∧ l ∈ c(ep) ∧ 〈le, t + 1〉 ∈ κ(hk

n+1) ∧
〈
le, t
〉
∈ κ(hk

n+1)∧

(∀ep′ ∈ EPat+1 : (ep′ = ep ∨ e(ep′) 6= le))
))
⇒ (Σt

n+1 |= l)
) (C.35)

with t ≤ n + 1.

By induction hypothesis:
(〈le, t〉 ∈ κk

n+1)⇒ (Σt
n+1 |= le)

By definition of |= (23): (
Σt

n+1 |= le
)
⇒
(
∀s ∈ Σt

n+1 : s |= le
)

∀l, t :
((
∃ep :

(
ep ∈ EPat+1 ∧ e(ep) = le ∧ l ∈ c(ep) ∧ (∀s ∈ Σt+1

n+1 : s |= le) ∧ (∀s ∈ Σt
n+1 : s |= le)∧

(∀ep′ ∈ EPat+1 : (ep′ = ep ∨ e(ep′) 6= le))
))
⇒ (Σt

n+1 |= l)
) (C.36)

with t ≤ n + 1.
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(C.36)

Recall the definition of re-evaluated k-states (29): Σt+1
n+1 =

⋃
s∈Σt

n+1

Res(at+1, s). Therefore, to show that (C.36) holds it is sufficient to show

that (C.37) holds.

∀l, t :
((
∃ep :

(
ep ∈ EPat+1 ∧ e(ep) = le ∧ l ∈ c(ep) ∧ (∀s ∈ Σt

n+1 : Res(at+1, s) |= le) ∧ (∀s ∈ Σt
n+1 : s |= le)∧

(∀ep′ ∈ EPat+1 : (ep′ = ep ∨ e(ep′) 6= le))
))
⇒ (Σt

n+1 |= l)
) (C.37)

with t ≤ n + 1.

Simplification.

∀l, t :
((
∃ep :

(
ep ∈ EPat+1 ∧ e(ep) = le ∧ l ∈ c(ep) ∧ (∀s ∈ Σt

n+1 : (Res(at+1, s) |= le ∧ s |= le))∧(
∀ep′ ∈ EPat+1 : (ep′ = ep ∨ e(ep′) 6= le)

) ))
⇒ (Σt

n+1 |= l)
) (C.38)

with t ≤ n + 1.

We rephrase towards a more compact representation:(
∃ep :

(
ep ∈ EPat+1 ∧ e(ep) = le ∧ (∀ep′ ∈ EPat+1 : (ep′ = ep ∨ e(ep′) 6= le))

))
⇔
(
∃!ep :

(
ep ∈ EPat+1 ∧ e(ep) = le

))
∀l, t :

((
∃!ep :

(
ep ∈ EPat+1 ∧ e(ep) = le ∧ l ∈ c(ep) ∧ (∀s ∈ Σt

n+1 : (Res(at+1, s) |= le ∧ s |= le))
))
⇒ (Σt

n+1 |= l)
)

(C.39)

with t ≤ n + 1.

Recall the |= operator for k-states (23): (Σt
n+1 |= l)⇒ (∀s ∈ Σt

n+1 : s |= l)

∀l, t :
((
∃!ep :

(
ep ∈ EPat+1 ∧ e(ep) = le ∧ l ∈ c(ep) ∧ (∀s ∈ Σt

n+1 : (Res(at+1, s) |= le ∧ s |= le))
))
⇒ (∀s ∈ Σt

n+1 : s |= l)
)
(C.40)

with t ≤ n + 1.

For brevity we consider only the case where e(ep) = le = fe. The case for le = ¬fe is similar. Recall (22): s |= fe ⇔ fe ∈ s.

∀l, t :
((
∃!ep :

(
ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep) ∧ (∀s ∈ Σt

n+1 : (fe ∈ Res(at+1, s) ∧ fe 6∈ s))
))
⇒ (∀s ∈ Σt

n+1 : s |= l)
)
(C.41)

with t ≤ n + 1.

Recall the Ak result function (25):

Res(at+1, s) = s ∪ E+
at+1

(s) \ E−at+1
(s) where

E+
at+1

(s) = {f |∃ep ∈ EPat+1 : e(ep) = f ∧ s |= c(ep)}

E−at+1
(s) = {f |∃ep ∈ EPat+1 : e(ep) = ¬f ∧ s |= c(ep)}

Since we only consider cases with a positive effect literal e(ep) = fe the lower term E−at+1
(s) can be neglected. Consequently:

Res(at+1, s) = s ∪ {f |∃ep ∈ EPat+1 : e(ep) = f ∧ s |= c(ep)} (C.42)

We substitute (C.42) in (C.41) and obtain (C.43).

∀l, t :
((
∃!ep :

(
ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep)∧(
∀s ∈ Σt

n+1 : (fe ∈ (s ∪ {f |∃ep′′ ∈ EPat+1 : (e(ep′′) = f ∧ s |= c(ep′′))}) ∧ fe 6∈ s)
)))

⇒ (∀s ∈ Σt
n+1 : s |= l)

) (C.43)

with t ≤ n + 1.
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We simplify:
(fe ∈ (s ∪ {f |∃ep′′ ∈ EPat+1 : (e(ep′′) = f ∧ s |= c(ep′′))}) ∧ fe 6∈ s)

⇔ (∃ep′′ ∈ EPat+1 : (e(ep′′) = fe ∧ s |= c(ep′′)))

∀l, t :
((
∃ep! :

(
ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep)∧

(∀s ∈ Σt
n+1 : (∃ep′′ ∈ EPat+1 : (e(ep′′) = fe ∧ s |= c(ep′′))))

))
⇒ (∀s ∈ Σt

n+1 : s |= l)
) (C.44)

with t ≤ n + 1.

By definition of |= (22):
(s |= c(ep′′) ∧ l ∈ c(ep′′))⇒ s |= l

∀l, t :
((
∃!ep :

(
ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep)∧

(∀s ∈ Σt
n+1 : (∃ep′′ ∈ EPat+1 : (e(ep′′) = fe ∧ s |= l)))

))
⇒ (∀s ∈ Σt

n+1 : s |= l)
) (C.45)

with t ≤ n + 1.

We simplify. (
∃!ep :

(
ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep) ∧ (∀s ∈ Σt

n+1 : (∃ep′′ ∈ EPat+1 : (e(ep′′) = fe ∧ s |= l)))
))

⇔(
∃!ep :

(
ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep) ∧ (∀s ∈ Σt

n+1 : s |= l)
))

∀l, t :
((
∃!ep :

(
ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep) ∧ (∀s ∈ Σt

n+1 : s |= l)
))

⇒ (∀s ∈ Σt
n+1 : s |= l)

) (C.46)

with t ≤ n + 1.

It is easy to see that (C.46) is true.

Induction Step 5 – (C.11g)
This is analogous to induction step 4 – (C.11f). �

Appendix C.3. Additional Lemmata
Appendix C.3.1. Number of Steps
The following Lemma 10 concerns the number of state transitions for an h-state h.

Lemma 10 (Step number for sequences of actions). Given a domain D with an initial h-state h0 and a sequence of actions

αn = [a1|| · · · ||an]. Then the following holds:

∀h ∈ Ψ̂(αn,h0) : now(h) = n (C.47)

Proof:
The Lemma follows directly from the extendedHPX -transition function (16) and theHPX -transition function (6).

Appendix C.3.2. Knowledge Persistence
The following Lemmata state that in the temporal query semantics Ak

TQS , knowledge itself is persistent (Lemma 11) an that
knowledge about the presence is no affected by re-evaluation (Lemma 12).
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Lemma 11 (Knowledge persistence in re-evaluated c-states). Given a domain D, a valid initial c-state δ0 = 〈u0,Σ0〉 a se-
quence of actions α = [a1, . . . , an, an+1] which produces re-evaluated k-states Σt

n and Σt
n+1 according to Definition 9. Then

(C.48) holds.
Σt

n |= l⇒ Σt
n+1 |= l (C.48)

with 0 ≤ t ≤ n.

Proof: For brevity we only consider positive literals, i.e. l = f . We make a case distinction concerning sensing and non-sensing
actions:

1. If an+1 is a non-sensing action then transition function (24) evaluates as follows: Φ(an+1, 〈un,Σn〉) = 〈un+1,Σn+1〉 with
un+1 = Res(an+1, un) and Σn+1 = {Res(an+1, sn)|sn ∈ Σn}. With this and Definition 8 about re-evaluated initial k-
states we conclude that Σ0

n+1 = Σ0
n. Hence, by Definition 9 about re-evaluated c-states it must be true that for an arbitrary

f : If ∀s ∈ Σt
n : f ∈ s then ∀s ∈ Σt

n+1 : f ∈ s and the Lemma is proven for the case of non-sensing actions.

2. If an+1 is a sensing action then transition function (26) evaluates as Φ(an+1, 〈un,Σn〉) =
〈un, {sn|(sn ∈ Σn) ∧ (f ∈ sn ⇔ f ∈ un)}〉. For this reason Σn ⊇ Σn+1. Hence by Definition 8 it must be true
that Σ0

n ⊇ Σ0
n+1 and by Definition 9 it must be true that for an arbitrary f : If ∀s ∈ Σt

n : f ∈ s then ∀s ∈ Σt
n+1 : f ∈ s. The

Lemma is proven for the case of sensing actions.

Items 1. and 2. prove the Lemma �

Lemma 12 (Re-evaluation does not affect knowledge about the presence). Given a domain D, a valid initial c-state δ0 =
〈u0,Σ0〉 and a sequence of actions αn = [a1; . . . ; an] such that 〈un,Σn〉 = Φ(an,Φ(an−1, · · ·Φ(a1, 〈u0,Σ0〉))). Let Σn

n =
Res(an, Res(an−1, · · ·Res(a1,Σ

0
n))) be a re-evaluated k-state with Σ0

n as the re-evaluated initial state according to Definition 8.
Then (C.49) holds.

Σn = Σn
n (C.49)

Proof:
Induction over n. We show that given (C.49) holds (C.50) holds as well.

Σn+1 = Σn+1
n+1 (C.50)

where 〈un+1,Σn+1〉 = Φ(an+1,Φ(an, · · ·Φ(a1, 〈u0,Σ0〉))) is a c-state resulting from the application of the transition functions
(24), (26) and Σn+1

n+1 = Res(an+1, Res(an, · · ·Res(a1,Σ
0
n+1)) is a re-evaluated k-state with Σ0

n+1 as the re-evaluated initial state
according to Definition 8.
Base Step: Σ0 = Σ0

0. This emerges from Definitions 2, 8 and 9. (Intuitively, if no action is applied then re-evaluation is not
applicable.)
Induction Step: Given that (C.49) holds for one n ≥ 0, then it holds that Σn+1 = Σn+1

n+1. The re-evaluated c-state after n+1 actions
is obtained with:

Σn+1
n+1 =

⋃
s∈Σ0

n+1

Res(an+1, Res(an, · · ·Res(a1, s))) (C.51)

We distinguish whether an+1 is a sensing or non-sensing action:

1. an+1 is a non-sensing action. In this case, according to the transition function (24) it holds that ∀s : (s ∈ Σn ⇔
Res(an+1, s) ∈ Σn+1). By definition of re-evaluated initial k-states (29) it follows that (C.52) holds.

Σ0
n = Σ0

n+1 (C.52)

Substituting (C.52) in (C.51) yields:

Σn+1
n+1 =

⋃
s∈Σ0

n

Res(an+1, Res(an, · · ·Res(a1, s))) (C.53)

By definition of re-evaluated k-states (29) it holds that Σn
n =

⋃
s∈Σ0

n

Res(an, · · ·Res(a1, s)) and we can rewrite (C.53) as:

Σn+1
n+1 =

⋃
s∈Σn

n

Res(an+1, s) (C.54)

40



By induction hypothesis we can substitute Σn
n with Σn and have:

Σn+1
n+1 =

⋃
s∈Σn

Res(an+1, s) (C.55)

We reformulate (C.55) as follows:
Σn+1

n+1 = {Res(an+1, s)|s ∈ Σn} (C.56)

The transition function (24) for non-sensing actions is:

Φ(an+1, 〈un,Σn〉) = 〈un+1,Σn+1〉
= 〈Res(an+1, un), {Res(an+1, s)|s ∈ Σn}〉

It must therefore hold that
Σn+1 = {Res(an+1, s)|s ∈ Σn} (C.57)

It follows from (C.56) and (C.57) that Σn+1
n+1 = Σn+1.

2. an+1 is a sensing action with an arbitrary knowledge proposition KPan+1 = fs. We make another case distinction:

(a) fs ∈ un:
According to 29) the re-evaluated k-state Σ0

n+1 is:

Σ0
n+1 = {s ∈ Σ0|Res(an+1, Res(an, · · ·Res(a1, s))) ∈ Σn+1} (C.58)

If an+1 is a sensing action, then Res(an+1, s) = s, and hence:

Σ0
n+1 = {s ∈ Σ0|Res(an, · · ·Res(a1, s)) ∈ Σn+1} (C.59)

Given that an+1 has a the knowledge proposition KPan+1 = fs, and fs ∈ un, then from transition function (26) we
can conclude that:

Σn+1 = {s ∈ Σn|fs ∈ s} (C.60)

Substituting (C.60) in (C.59) yields:

Σ0
n+1 = {s ∈ Σ0|Res(an, · · ·Res(a1, s)) ∈ {s′ ∈ Σn|fs ∈ s′}} (C.61)

By Definition 8, the re-evaluated k-state Σ0
n is:

Σ0
n = {s ∈ Σ0|Res(an, · · ·Res(a1, s)) ∈ Σn} (C.62)

With (C.61) and (C.62) we can conclude that:

Σ0
n+1 = {s ∈ Σ0

n|fs ∈ Res(an, · · ·Res(a1, s))} (C.63)

Substituting (C.63) in (C.51) yields:

Σn+1
n+1 =

⋃
s∈{s0∈Σ0

n|fs∈Res(an,···Res(a1,s0))}

Res(an+1, Res(an, · · ·Res(a1, s))) (C.64)

For a sensing actions a, it holds that Res(a, s) = s for an arbitrary state s. Hence we write:

Σn+1
n+1 =

⋃
s∈{s0∈Σ0

n|fs∈Res(an,···Res(a1,s0))}

Res(an, · · ·Res(a1, s)) (C.65)
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We rewrite (C.65) and separate the union operator as follows:

Σn+1
n+1 =

⋃
s∈Σ0

n

Res(an, · · ·Res(a1, s))

\
⋃

s∈{s0∈Σ0
n|fs 6∈Res(an,···Res(a1,s0))}

Res(an, · · ·Res(a1, s))

(C.66)

With the re-evaluation function (28) and the induction hypothesis (C.49) we have that⋃
s∈{s0∈Σ0

n|fs 6∈Res(an,···Res(a1,s0))}

Res(an, · · ·Res(a1, s))

={Res(an, · · ·Res(a1, s))|s ∈ Σ0
n ∧ fs 6∈ Res(an, · · ·Res(a1, s))}

(28)
= {s ∈ Σn

n|fs 6∈ s}
(C.49)

= {s ∈ Σn|fs 6∈ s}

(C.67)

Thus, we can rewrite (C.66) as:

Σn+1
n+1 =

⋃
s∈Σ0

n

Res(an, · · ·Res(a1, s)) \ {s ∈ Σn|fs 6∈ s} (C.68)

With the definition of re-evaluated c-states (28) it holds that Σn
n =

⋃
s∈Σ0

n

Res(an, · · ·Res(a1, s)) and we can rewrite

(C.68) as:

Σn+1
n+1 = Σn

n \ {s ∈ Σn|fs 6∈ s} (C.69)

By induction hypothesis we substitute Σn
n with Σn and obtain:

Σn+1
n+1 = Σn \ {s ∈ Σn|fs 6∈ s} (C.70)

Given that fs ∈ un, then the transition function 26 for sensing actions is:

Φ(an+1, 〈un,Σn〉) = 〈un+1,Σn+1〉
= 〈un, {s ∈ Σn|fs ∈ s}〉

(C.71)

Extracting Σn+1 from (C.71) yields:
Σn+1 = {s ∈ Σn|fs ∈ s} (C.72)

We rewrite this as:
Σn+1 = Σn \ {s ∈ Σn|fs 6∈ s} (C.73)

And substitute (C.73) in (C.70) to obtain:

Σn+1
n+1 = Σn+1 (C.74)

(b) fs 6∈ un: Similar to the case where fs ∈ un.

We have shown that for both sensing and non-sensing actions the induction step holds. This proves the Lemma. �
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